Skip to main content
Log in

Current limitations and future opportunities for prediction of DILI from in vitro

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Drug-induced liver injury (DILI) is a major concern for drug developers, regulators and clinicians. It is triggered by drug and xenobiotic insults leading to liver impairment or damage, in the worst-case liver failure. In contrast to acute “intrinsic” hepatotoxicity, DILI typically manifests in a very small subset of the population under treatment with no clear dose relationship and inconsistent temporal patterns and is therefore termed an idiosyncratic event. Involved are multifactorial, compound-dependent mechanisms and host-specific factors, making the prediction in preclinical test systems very challenging. While preclinical safety studies in animals usually are able to capture direct, acute liver toxicities, they are less predictive for human DILI, where specific, human-derived in vitro models can potentially close the gap. On one hand, mechanistic approaches addressing key mechanisms involved in DILI in well-characterized and standardized in vitro test systems have been developed. On the other hand, co-cultures of different cell types, including patient- and/or stem cell-derived cells, in a three-dimensional setup allow for prolonged incubations and multiplexed readouts. Such complex setups might better reflect multifactorial human DILI. One major challenge is that for many compounds with human DILI the underlying mechanisms are not yet fully understood, complicating establishment and validation of predictive cellular tools. A tiered approach including rapid mechanism-based in vitro screens followed by confirmatory tests in more physiologically relevant models might allow minimizing DILI risk early on in vitro. Such complex, integrated approaches will gain from larger collaborations in multidisciplinary groups bringing existing knowledge and state-of-the-art technology together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleo MD, Luo Y, Swiss R, Bonin PD, Potter DM, Will Y (2014) Human drug-induced liver injury severity is highly associated to dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology 60:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Boelsterli UA, Lim PL (2007) Mitochondrial abnormalities–a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 220:92–107

    Article  CAS  PubMed  Google Scholar 

  • Brink A, Paehler A, Funk C, Schuler F, Schadt S (2016) Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov Today (in press)

  • Chalasani NP, Hayashi PH, Bonkovsky HL, Navarro VJ, Lee WM, Fontana RJ (2014) ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 109:950–966

    Article  PubMed  Google Scholar 

  • Chalhoub WM, Sliman KD, Arumuganathan M, Lewis JH (2014) Drug-induced liver injury: what was new in 2013? Expert Opin Drug Metab Toxicol 10:959–980

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16:697–703

    Article  PubMed  Google Scholar 

  • Chen M, Borlak J, Tong W (2013) High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58:388–396

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J, Tong W (2014a) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8:201–213

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Borlak J, Tong W (2014b) Predicting idiosyncratic drug-induced liver injury: some recent advances. Expert Rev Gastroenterol Hepatol 8:721–723

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2014c) A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the ‘rule-of-two’ model. Arch Toxicol 88:1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI (2015) Drug-induced liver injury: interactions between drug properties and host factors. J Hepatol 63:503–514

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W (2016) DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 21:648–653

    Article  CAS  PubMed  Google Scholar 

  • Corsini A et al (2012) Current challenges and controversies in drug-induced liver injury Drug safety 35:1099–1117

    CAS  PubMed  Google Scholar 

  • Dambach DM, Andrews BA, Moulin F (2005) New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol Pathol 33:17–26. doi:10.1080/01926230590522284

    Article  CAS  PubMed  Google Scholar 

  • Daveau M, Davrinche C, Julen N, Hiron M, Arnaud P, Lebreton JP (1988) The synthesis of human alpha-2-Hs glycoprotein is down-regulated by cytokines in hepatoma Hepg2 Cells. FEBS Lett 241:191–194. doi:10.1016/0014-5793(88)81059-7

    Article  CAS  PubMed  Google Scholar 

  • Dawson S, Stahl S, Paul N, Barber J, Kenna JG (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos 40:130–138

    Article  CAS  PubMed  Google Scholar 

  • Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, Meier PJ (2001) The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 69:223–231

    Article  CAS  PubMed  Google Scholar 

  • Frampton JE (2011) Ambrisentan. Am J Cardiovasc Drugs 11:215–226

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson L et al (2014) Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFalpha-mediated hepatotoxicity. Toxicol Sci 140:144–159

    Article  CAS  PubMed  Google Scholar 

  • Funk C, Pantze M, Scheuermann G, Jehle L, Ponelle C, Lazendic M, Gasser R (2001a) Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone-sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone-sulfate. Toxicol 167:83–98

    Article  CAS  Google Scholar 

  • Funk C, Ponelle C, Scheuermann G, Pantze M (2001b) Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity. In vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 59:627–635

    CAS  PubMed  Google Scholar 

  • Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H (2014) The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos 42:318–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Godoy P et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530. doi:10.1007/s00204-013-1078-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Lechon MJ, Tolosa L (2016) Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol 90:2049–2061

    Article  CAS  PubMed  Google Scholar 

  • Holt MP, Ju C (2010) Drug-induced liver injury. Handb Exp Pharmacol 196:3–27

    Article  CAS  Google Scholar 

  • Jiang J, Wolters JEJ, van Breda SG, Kleinjans JC, de Kok TM (2015) Development of novel tools for the in vitro investigation of drug-induced liver injury. Expert Opin Drug Metab Toxicol 11:1523–1537. doi:10.1517/17425255.2015.1065814

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N (2013) Avoiding idiosyncratic DILI: two is better than one. Hepatology 58:15–17

    Article  PubMed  Google Scholar 

  • Khetani SR et al (2013) Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. Toxicol Sci 132:107–117

    Article  CAS  PubMed  Google Scholar 

  • Kock K et al (2014) Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile Acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos 42:665–674

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostadinova R et al (2013) A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol 268:1–16

    Article  CAS  PubMed  Google Scholar 

  • Krueger W, Boelsterli UA, Rasmussen TP (2014) Stem cell strategies to evaluate idiosyncratic drug-induced liver injury. J Clin Transl Hepatol 2:143–152

    PubMed  PubMed Central  Google Scholar 

  • Kuijper IA, Yang H, Van de Water B, Beltman JB (2016) Unraveling cellular pathways contributing to drug-induced liver injury by dynamic modeling. Expert Opin Drug Metab Toxicol. doi:10.1080/17425255.2017.1234607

    PubMed  Google Scholar 

  • Leise MD, Poterucha JJ, Talwalkar JA (2014) Drug-Induced Liver Injury. Mayo Clin Proc 89:95–106. doi:10.1016/j.mayocp.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shi Q, Ding D, Kelly R, Fang H, Tong W (2011) Translating clinical findings into knowledge in drug safety evaluation–drug induced liver injury prediction system (DILIps). PLoS Comput Biol 7:e1002310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y (2007) Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of hepG2 cells to mitochondrial toxicants. Toxicol Sci 97:539–547

    Article  CAS  PubMed  Google Scholar 

  • Marx U et al (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33:272–321. doi:10.14573/altex.1603161

    PubMed  Google Scholar 

  • McGill MR, Jaeschke H (2014) Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opin Drug Metab Toxicol 10:1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meex SJR, Andreo U, Sparks JD, Fisher EA (2011) Huh-7 or HepG2 cells: which is the better model for studying human apolipoprotein-B100 assembly and secretion? J Lipid Res 52:152–158. doi:10.1194/jlr.D008888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesens N et al (2015) Are zebrafish larvae suitable for assessing the hepatotoxicity potential of drug candidates? J Appl Toxicol 35:1017–1029. doi:10.1002/jat.3091

    Article  CAS  PubMed  Google Scholar 

  • Messner S, Agarkova I, Moritz W, Kelm JM (2013) Multi-cell type human liver microtissues for hepatotoxicity testing. Arch Toxicol 87:209–213. doi:10.1007/s00204-012-0968-2

    Article  CAS  PubMed  Google Scholar 

  • Morgan RE et al (2013) A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci 136:216–241

    Article  CAS  PubMed  Google Scholar 

  • Moulin F, Flint O (2015) In vitro models for the prediction of drug-induced liver injury in lead discovery. Antitargets and drug safety. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 125–158

    Chapter  Google Scholar 

  • Mulliner D, Schmidt F, Stolte M, Spirkl H-P, Czich A, Amberg A (2016) Computational models for human and animal hepatotoxicity with a global application scope. Chem Res Toxicol 29:757–767. doi:10.1021/acs.chemrestox.5b00465

    Article  CAS  PubMed  Google Scholar 

  • O’Brien PJ (2014) High-content analysis in toxicology: screening substances for human toxicity potential, elucidating subcellular mechanisms and in vivo use as translational safety biomarkers. Basic Clin Pharmacol 115:4–17. doi:10.1111/bcpt.12227

    Article  Google Scholar 

  • Olson H et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  PubMed  Google Scholar 

  • Peters TS (2005) Do preclinical testing strategies help predict human hepatotoxic potentials? Toxicol Pathol 33:146–154

    Article  CAS  PubMed  Google Scholar 

  • Poon KL et al (2016) Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates. Arch Toxicol. doi:10.1007/s00204-016-1789-5

    PubMed  Google Scholar 

  • Roth RA, Ganey PE (2010) Intrinsic versus Idiosyncratic drug-induced hepatotoxicity-two villains or one? J Pharmacol Exp Ther 332:692–697. doi:10.1124/jpet.109.162651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth A, Singer T (2014) The application of 3D cell models to support drug safety assessment: opportunities & challenges. Adv Drug Deliv Rev 69–70:179–189

    Article  PubMed  Google Scholar 

  • Sakatis MZ et al (2012) Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds. Chem Res Toxicol 25:2067–2082

    Article  CAS  PubMed  Google Scholar 

  • Schadt S et al (2015) Minimizing DILI risk in drug discovery—a screening tool for drug candidates. Toxicol In Vitro 30:429–437

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Leung L, Barton HA, Will Y, Rodrigues AD, Greene N, Aleo MD (2015) Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays. Toxicol Sci 147:500–514. doi:10.1093/toxsci/kfv152

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ, Ganey PE, Roth RA (2010) Idiosyncratic drug-induced liver injury and the role of inflammatory stress with an emphasis on an animal model of trovafloxacin hepatotoxicity. Toxicol Sci 118:7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siramshetty VB, Nickel J, Omieczynski C, Gohlke BO, Drwal MN, Preissner R (2016) WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucleic Acids Res 44:D1080–1086. doi:10.1093/nar/gkv1192

    Article  PubMed  Google Scholar 

  • Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD (2011) Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 24:1345–1410. doi:10.1021/tx200168d

    Article  CAS  PubMed  Google Scholar 

  • Swift B, Pfeifer ND, Brouwer KLR (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446–471. doi:10.3109/03602530903491881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RA et al (2012) In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol 25:1616–1632. doi:10.1021/tx300091x

    Article  CAS  PubMed  Google Scholar 

  • Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP (2016) Reactive Metabolites: current and emerging risk and hazard assessments. Chem Res Toxicol 29:505–533. doi:10.1021/acs.chemrestox.5b00410

    Article  CAS  PubMed  Google Scholar 

  • Uetrecht JP (1999) New concepts in immunology relevant to idiosyncratic drug reactions: the “danger hypothesis” and innate immune system. Chem Res Toxicol 12:387–395

    Article  CAS  PubMed  Google Scholar 

  • Vliegenthart ADB, Tucker CS, Del Pozo J, Dear JW (2014) Zebrafish as model organisms for studying drug-induced liver injury. Brit J Clin Pharmaco 78:1217–1227. doi:10.1111/bcp.12408

    Article  CAS  Google Scholar 

  • Ware BR, Khetani SR (2016) Engineered liver platforms for different phases of drug development. Trends Biotechnol (in press)

  • Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145:252–262. doi:10.1093/toxsci/kfv048

    Article  CAS  PubMed  Google Scholar 

  • Watkins P (2015) The dili-sim initiative, Integrated systems pharmacology modeling to explain and predict drug hepatotoxicity. Clin Therap 37:e170

    Article  Google Scholar 

  • Wu Y, Geng XC, Wang JF, Miao YF, Lu YL, Li B (2016) The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol 32:37–59. doi:10.1007/s10565-016-9316-2

    Article  CAS  PubMed  Google Scholar 

  • Xu JHJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105:97–105. doi:10.1093/toxsci/kfn109

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Kaplowitz N (2013) Mechanisms of drug-induced liver injury. Clin Liver Dis 17:507–518. doi:10.1016/j.cld.2013.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Doshi U, Suzuki A, Chang CW, Borlak J, Li AP, Tong W (2016) Evaluation of multiple mechanism-based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles. Chem Biol Interact 255:3–11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Roth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funk, C., Roth, A. Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol 91, 131–142 (2017). https://doi.org/10.1007/s00204-016-1874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1874-9

Keywords

Navigation