Skip to main content
Log in

The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Drug-induced liver injury (DILI) is a leading cause of discontinuation of new drug approval or withdrawal of marketed medicine based on safety due to organ vulnerability. The aim of this research is to investigate the potential abilities of four different in vitro cell models (L-02, HepG2, HepaRG, and hiHeps cell lines) in assessing marketed drugs labeled with apparently different types of liver injury. A total of 17 drugs with versatile pharmacological profiles were chosen, of which, 14 drugs are recognized as DILI agents and 3 drugs are DILI irrelevant. Preliminary cellular screening assays indicated that the HepaRG cell line had an advantage over other cell lines in predicting drugs associated with DILI in vitro as it had the highest Youden’s index (71.4 %). A multi-parametric screening assay showed that oxidative stress, mitochondrial damage, and disorders of neutral lipid metabolism were changed notably in the HepaRG cell line after DILI-related drugs exposure, accounting for its high sensitivity in comparison with other three cell lines. In addition, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) all correlated with the cytotoxic effects of diclofenac sodium (p < 0.05), buspirone hydrochloride (p < 0.01), and danazol (p < 0.01) in the HepaRG cell line. We conclude that the HepaRG cell line is a superior in vitro cell model to other three cell lines for evaluating drugs with DILI potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

APAP:

Acetaminophen

AST:

Aspartate aminotransferase

CCK-8:

Cell counting kit-8

CHE:

Cholinesterase

DILI:

Drug-induced liver injury

GLDH:

Glutamate dehydrogenase

γ-GT:

γ-Glutamyl transferase

HCS:

High-content screening

LDH:

Lactate dehydrogenase

MAO:

Monoamine oxidase

MDH:

Malate dehydrogenase

NAT:

N-acetyltransferase

5’-NT:

5’-nucleotidase

PSTC:

Predictive Safety Testing Consortium

TPL:

Triptolide

References

  • Bjӧrnsson ES. Drug-induced liver injury: an overview over the most critical compounds. Arch Toxicol. 2015;89(3):327–34.

    Article  Google Scholar 

  • Cerec V, Glaise D, et al. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology. 2007;45(4):957–67.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Vijay V, et al. FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today. 2011;16(15–16):697–703.

    Article  PubMed  Google Scholar 

  • Cheong N, Madesh M, et al. Functional and trafficking defects in ATP binding cassette A3 mutants associated with respiratory distress syndrome. J Biol Chem. 2006;281(14):9791–800.

    Article  CAS  PubMed  Google Scholar 

  • Danan, G, Teschke, R. RUCAM in drug and herb induced liver injury: the update. Int J Mol Sci. 2015;17(1). pii: E14.

  • Du Y, Wang J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014;14(3):394–403.

    Article  CAS  PubMed  Google Scholar 

  • Esch MB, Mahler GJ, et al. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip. 2014;14(16):3081–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Lechon MJ, Tolosa L, et al. Mechanism-based selection of compounds for the development of innovative in vitro approaches to hepatotoxicity studies in the LIINTOP project. Toxicol In Vitro. 2010;24(7):1879–89.

    Article  CAS  PubMed  Google Scholar 

  • Gripon P, Rumin S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanumegowda UM, Copple BL, et al. Basement membrane and matrix metalloproteinases in monocrotaline-induced liver injury. Toxicol Sci. 2003;76(1):237–46.

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Yang T, et al. Human fetal hepatocyte line, L-02, exhibits good liver function in vitro and in an acute liver failure model. Transplant Proc. 2013;45(2):695–700.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Qin J, et al. Magnesium isoglycyrrhizinate protects hepatic L02 cells from ischemia/reperfusion induced injury. Int J Clin Exp Pathol. 2014;7(8):4755–64.

    PubMed  PubMed Central  Google Scholar 

  • Kia R, Kelly L, et al. MicroRNA-122: a novel hepatocyte-enriched in vitro marker of drug-induced cellular toxicity. Toxicol Sci. 2015;144(1):173–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lheureux PE, Hantson P. Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol (Phila). 2009;47(2):101–11.

    Article  CAS  Google Scholar 

  • Li N, Xia Q, et al. Hepatotoxicity and tumorigenicity induced by metabolic activation of pyrrolizidine alkaloids in herbs. Curr Drug Metab. 2011;12(9):823–34.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tian Y, et al. Determination of diosbulbin B in rat plasma and urine by LC-MS/MS and its application in pharmacokinetic and urinary excretion studies. J Pharm Biomed Anal. 2013;77:133–8.

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Jiang ZZ, et al. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014;155(1):67–79.

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Li C, et al. Cytochrome p450-mediated metabolic activation of diosbulbin B. Drug Metab Dispos. 2014;42(10):1727–36.

    Article  PubMed  Google Scholar 

  • McGill MR, Yan HM, et al. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology. 2011;53(3):974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller D, Heinzle E, et al. 3D hepatic in vitro models as tools for toxicity studies. Curr Tissue Eng. 2013;2(1):78–89.

    Article  CAS  Google Scholar 

  • Navarro VJ, Senior JR. Drug-related hepatotoxicity. N Engl J Med. 2006;354(7):731–9.

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Yokoi T. Establishment of animal models of drug-induced liver injury and analysis of possible mechanisms. Yakugaku Zasshi. 2015;135(4):579–88.

    Article  CAS  PubMed  Google Scholar 

  • Persson M, Løye AF, et al. A high content screening assay to predict human drug-induced liver injury during drug discovery. J Pharmacol Toxicol Methods. 2013;68(3):302–13.

    Article  CAS  PubMed  Google Scholar 

  • Schomaker S, Warner R, et al. Assessment of emerging biomarkers of liver injury in human subjects. Toxicol Sci. 2013;132(2):276–83.

    Article  CAS  PubMed  Google Scholar 

  • Tarantino G, Conca P, et al. A prospective study of acute drug-induced liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatol Res. 2007;37(6):410–5.

    Article  CAS  PubMed  Google Scholar 

  • Tarantino G, Di Minno MN, et al. Drug-induced liver injury: is it somehow foreseeable? World J Gastroenterol. 2009a;15(23):2817–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarantino G, Pezzullo MG, et al. Drug-induced liver injury due to “natural products” used for weight loss: a case report. World J Gastroenterol. 2009b;15(19):2414–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teschke R, Andrade RJ. Drug-induced liver injury: expanding our knowledge by enlarging population analysis with prospective and scoring causality assessment. Gastroenterology. 2015;148(7):1271–3.

    Article  PubMed  Google Scholar 

  • Tolosa L, Pinto S, et al. Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci. 2012;127(1):187–98.

    Article  CAS  PubMed  Google Scholar 

  • Tomida T, Okamura H, et al. Multiparametric assay using HepaRG cells for predicting drug-induced liver injury. Toxicol Lett. 2015;236(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  • Turpeinen M, Tolonen A, et al. Functional expression, inhibition and induction of CYP enzymes in HepaRG cells. Toxicol In Vitro. 2009;23(4):748–53.

    Article  CAS  PubMed  Google Scholar 

  • Varecha M, Amrichová J, et al. Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis. 2007;12(7):1155–71.

    Article  CAS  PubMed  Google Scholar 

  • Wang AG, Xia T, et al. Effects of phenobarbital on metabolism and toxicity of diclofenac sodium in rat hepatocytes in vitro. Food Chem Toxicol. 2004;42(10):1647–53.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Peng X, et al. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics. 2013;13(2):301–12.

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Bailly-Maitre B, et al. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JJ, Henstock PV, et al. Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci. 2008;105(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  • Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for Prof. Deng Hong-kui and his research team for supplying ample hiHeps cell line as well as excellent technical assistance in cell culture and liver function maintenance. This work was supported by the National Key Technology R&D Program of China (2012ZX09302001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-chao Geng or Bo Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Supplementary data to this article can be found online.

ESM 1

(DOC 26947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Geng, Xc., Wang, Jf. et al. The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol 32, 37–59 (2016). https://doi.org/10.1007/s10565-016-9316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9316-2

Keywords

Navigation