Skip to main content

Advertisement

Log in

Oxidative stress and gene expression profiling of cell death pathways in alpha-cypermethrin-treated SH-SY5Y cells

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In this study, we investigated the induction of oxidative stress and apoptosis in human neuroblastoma cell line SH-SY5Y in response to alpha-cypermethrin (α-CYPER) exposure. MTT and LDH assays were carried out to assess the α-CYPER cytotoxicity. The IC50 value for α-CYPER was calculated to be 78.3 ± 2.98 µM for the MTT assay and 71.5 ± 3.94 µM for LDH assay. The pyrethroid α-CYPER (1–100 µM), in a dose-dependent manner, induced a significant increase in lipid peroxides measured as malondialdehyde (MDA) and in the levels of nitric oxide (NO). The neuroprotective role of three antioxidants, melatonin (MEL), Trolox and N-acetylcysteine (NAC) against α-CYPER-induced oxidative stress was examined. Compared to other antioxidants, MEL (1 µM) treatment showed the most effective protection against α-CYPER-induced lipid peroxidation and NO production. The effects of α-CYPER on gene expression profiling of cell death pathway in human neuroblastoma SH-SY5Y cells were also investigated. Of the 84 genes examined (P < 0.001; fold change >1.5), changes in mRNA levels were detected in 39 genes: 36 were up-regulated and 3 were down-regulated. A greater fold change reversion than 3.5-fold was observed on the up-regulated ATP6V1G2, BCL2, CASP9, FAS, GADD45A, SPATA2, SYCP2, ATG7, NFKB1, SNCA, ULK1 and JPH3 genes. The results demonstrated that α-CYPER alters the expression of apoptosis-, autophagy- and necrosis genes as well as induces oxidative stress which may lead to DNA damage. The detailed knowledge of the changes in gene expression obtained will provide a basis for further elucidating the molecular mechanisms of the α-CYPER-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-CYPER:

Alpha-cypermethin

AKT1:

V-akt murine thymoma viral oncogene homolog 1

APAF1:

Apoptotic peptidase activating factor 1

ATG3:

Autophagy-related 3 homolog (S. cerevisiae)

ATG5:

Autophagy-related 5 homolog (S. cerevisiae)

ATG7:

Autophagy-related 7 homolog (S. cerevisiae)

ATG12:

Autophagy-related 12 homolog (S. cerevisiae)

ATP6V1G2:

ATPase, H + transporting, lysosomal 13 kDa, V1 subunit G2

BCL2:

B cell CLL/lymphoma 2

BCL2L1:

Bcl2-like 1

BIRC2:

Baculoviral IAP repeat-containing 2

BMF:

Bcl2 modifying factor

CASP3:

Caspase 3, apoptosis-related cysteine peptidase

CASP7:

Caspase 7, apoptosis-related cysteine peptidase

CASP9:

Caspase 9, apoptosis-related cysteine peptidase

COMMD4:

COMM domain containing 4

CTSB:

Cathepsin B

CYLD:

Cylindromatosis, turban tumor syndrome

DENND4A:

DENN/MADD domain containing 4A

FAS:

Tumor necrosis factor receptor superfamily, member 6

GADD45A:

Growth arrest and DNA damage-inducible alpha

GSH:

Glutathione

GRB2:

Growth factor receptor-bound protein 2

HSPBAP1:

HSPB (heat shock 27 kDa)-associated protein 1

HTT:

Huntingtin

IGF1R:

Insulin-like growth factor 1 receptor

JPH3:

Junctophilin 3

MDA:

Malondialdehyde tetrabutylammonium salt

MAP1LC3A:

Microtubule-associated protein 1 light chain 3 alpha

MAPK8:

Mitogen-activated protein kinase 8

MEL:

Melatonin

NAC:

N-acetylcysteine

NFKB1:

Nuclear factor of kappa light polypeptide gene enhancer in B cells 1

NO:

Nitric oxide

NOL3:

Nucleolar protein 3 (apoptosis repressor with CARD domain)

PARP1:

Poly (ADP-ribose) polymerase 1

PARP2:

Poly (ADP-ribose) polymerase 2

SNCA:

Synuclein, alpha (non-A4 component of amyloid precursor)

SPATA2:

Spermatogenesis-associated protein 2

SQSTM1:

Sequestosome 1

SYCP2:

Synaptonemal complex protein 2

TP53:

Tumor protein p53

TXNL4B:

Thioredoxin-like 4B

ULK1:

Unc-51-like kinase 1 (C. elegans)

XIAP:

X-linked inhibitor of apoptosis

References

  • Aldridge WN (1990) An assessment of the toxicological properties of pyrethroids and their neurotoxicity. Crit Rev Toxicol 21:89–104

    Article  CAS  PubMed  Google Scholar 

  • Amabeoku GJ, Farmer CC (2005) Gamma-aminobutyric acid and mefloquine-induced seizures in mice. Prog Neuropsychopharmacol Biol Psychiatry 29:917–921

    Article  CAS  PubMed  Google Scholar 

  • Amer SM, Ibrahim AAES, El-Sherbeny KM (1993) Induction of chromosomal aberrations and sister chromatid exchange in vivo and in vitro by the insecticide cypermethrin. J Appl Toxicol 13:341–345

    Article  CAS  PubMed  Google Scholar 

  • Anadón A, Martínez-Larrañaga MR, Martínez MA (2009) Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine. Vet J 182:7–20

    Article  PubMed  Google Scholar 

  • Anadón A, Ares I, Martínez MA, Martínez-Larrañaga MR (2013a) Pyrethrins and synthetic pyrethroids: use in veterinary medicine. In: Ramawat KG, Merillon JM (eds) Handbook of natural products. Springer, Berlin, pp 1–25. doi:10.10007/978-3-642-22144-6_131

    Google Scholar 

  • Anadón A, Martínez M, Martínez M, Castellano V, Ares I, Romero A, Fernández R, Martínez-Larrañaga MR (2013b) Differential induction of cytochrome P450 isoforms and peroxisomal proliferation by cyfluthrin in male Wistar rats. Toxicol Lett 220:135–142

    Article  PubMed  Google Scholar 

  • Aschkenazi S, Straszewski S, Verwer KMA, Foellmer H, Rutherford T, Mor G (2002) Differential regulation and function of the Fas/Fas ligand system in human trophoblast cells. Biol Reprod 66:1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Bauche F, Stephan JP, Touzalin AM, Jegou B (1998) In vitro regulation an inducible-type NO synthase in the rat seminiferous tubule cells. Biol Reprod 58:431–438

    Article  CAS  PubMed  Google Scholar 

  • Casco VH, Izaguirre MF, Marin L, Vergara MN, Lajmanovich RC, Peltzer P, Soler AP (2006) Apoptotic cell death in the central nervous system of Bufo arenarum tadpoles induced by cypermethrin. Cell Biol Toxicol 22:199–211

    Article  CAS  PubMed  Google Scholar 

  • Cort W, Scott J, Araujo M, Mergens W, Cannalonga M, Osadca M, Harley H, Parrish D, Pool W (1975) Antioxidant activity and stability of 6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid. J Am Oil Chem Soc 52:174–178

    Article  CAS  PubMed  Google Scholar 

  • Cretu A, Sha X, Tront J, Hoffman B, Liebermann D (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Can Ther 7:268–276

    CAS  Google Scholar 

  • Dansithong W, Paul S, Scoles DR, Pulst SM, Duong P, Huynh DP (2015) Generation of SNCA cell models using zinc finger nuclease (ZFN) technology for efficient high-throughput drug screening. PLoS ONE 10(8):e0136930

    Article  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  • Elwan MA, Richardson JR, Guillot TS, Caudle WM, Miller GW (2006) Pyrethroid pesticide-induced alterations in dopamine transporter function. Toxicol Appl Pharmacol 211:188–197

    Article  CAS  PubMed  Google Scholar 

  • Giray B, Gürbay A, Hincal F (2001) Cypermethrin-induced oxidative stress in rat brain and liver is prevented by vitamin E or allopurinol. Toxicol Lett 118:139–146

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Giri A, Sharma GD, Prasad SB (2003) Induction of sister chromatid exchanges by cypermethrin and carbosulfan in bone marrow cells of mice in vivo. Mutagenesis 18:53–58

    Article  CAS  PubMed  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Boil Chem 17:9357–9360

    Article  Google Scholar 

  • Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD (2015) p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Zheng S, Fu Z (2011a) Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immun 30:1049–1054

    Article  CAS  Google Scholar 

  • Jin Y, Zheng S, Pu Y, Shu L, Sun L, Liu W, Fu Z (2011b) Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). Chemosphere 82:398–404

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Wang L, Ruan M, Liu J, Yang Y, Zhou C, Xu B, Fu Z (2011c) Cypermethrin exposure during puberty induces oxidative stress and endocrine disruption in male mice. Chemosphere 84:124–130

    Article  CAS  PubMed  Google Scholar 

  • Kale M, Rathore N, John S, Bhatnagar D (1999) Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett 105:197–205

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Hwang SY, Min KS, Yoon JT (2013) Molecular cloning and expression analyses of porcine MAP1LC3A in the granulosa cells of normal and miniature pig. Reprod Biol Endocrinol 11:2–8

    Article  Google Scholar 

  • Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Chapter 2. In: Amini S, White MK (eds) Neuronal cell culture: methods and protocols, methods in molecular biology, vol 1078. Springer Science, New York, pp 9–20. doi:10.1007/978-1-62703-640-5_2

  • Lawrence LJ, Casida JE (1983) Stereospecific action of pyrethroids insecticides on the gamma-aminobutyric acid receptor-ionophore complex. Science 221:1399–1401

    Article  CAS  PubMed  Google Scholar 

  • Lawrence LJ, Gee KW, Yamamura HI (1985) Interactions of pyrethroid insecticides with chloride ionophore associated binding sites. Neurotoxicology 6:87–98

    CAS  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  • Li H-Y, Wu S-Y, Shi N (2007) Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS. Toxicol Lett 171:87–98

    Article  CAS  PubMed  Google Scholar 

  • Malkiewicz K, Koteras M, Folkesson R, Brzezinski J, Winblad B, Szutowski M, Benedikz E (2006) Cypermethrin alters glial fibrillary acidic protein levels in the rat brain. Environ Toxicol Pharmacol 21:51–55

    Article  CAS  PubMed  Google Scholar 

  • Mansour SA, Mossa ATH (2010) Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pestic Biochem Physiol 96:14–23

    Article  CAS  Google Scholar 

  • Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MKR, Prabhakar YS, Bandyopadhyay S (2012) Cypermethrin induces astrocyte apoptosis by the disruption of the autocrine/paracrine mode of epidermal grow factor receptor signaling. Toxicol Sci 125:473–487

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Mun JY, Lee WY, Han SS (2005) Effects of cypermethrin on the dopaminergic neurons in the progressive hemiparkinsinian rats. Toxicol Mech Methods 15:399–404

    Article  CAS  PubMed  Google Scholar 

  • Narahashi T (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol 79:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nasuti C, Gabbianelli R, Falcioni ML, Di Stefano A, Sozio P, Cantalamessa F (2007) Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 229:194–205

    Article  CAS  PubMed  Google Scholar 

  • Nishi M, Sakagamib H, Komazakic S, Kondob H, Takeshimaa H (2003) Coexpression of junctophilin type 3 and type 4 in brain. Mol Brain Res 118:102–110

    Article  CAS  PubMed  Google Scholar 

  • Pahlman S (1990) Human neuroblastoma cells in culture: a model for neuronal cell differentiation and function. Acta Physiol Scand 592:25–37

    CAS  Google Scholar 

  • Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin. Nature’s most versatile biological signal? FEBS J 273:2813–2832

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Pandey A, Bajpayee M, Parmar D, Dhawan A (2006) Cypermethrin-induced DNA damage in organs and tissues of the mouse: evidence from the comet assay. Mutat Res 607:176–183

    Article  CAS  PubMed  Google Scholar 

  • Power LE, Sudakin DL (2007) Pyrethrin and pyrethroid exposures in the United States: a longitudinal analysis of incidents reported to poison centers. J Med Toxicol 3:94–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Raszewski G, Lemieszek MK, Lukawski K, Juszczak M, Rzeski W (2015) Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin Pharmacol Toxicol 116:158–167

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martín V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  PubMed  Google Scholar 

  • Romero A, Egea J, García AG, López MG (2010) Synergistic neuroprotective effect of combined low concentrations of galantamine and melatonin against oxidative stress in SH-SY5Y neuroblastoma cells. J Pineal Res 49:141–148

    Article  CAS  PubMed  Google Scholar 

  • Romero A, Ramos E, Ares I, Castellano V, Martínez M, Martínez-Larrañaga MR, Anadón A, Martínez MA (2016) Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: protection by antioxidants. Toxicol Lett 252:42–49

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Tiwari MN, Dixit A, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2011a) Nigrostriatal proteomics of cypermethrin-induced dopaminergic neurodegeneration: microglial activation-dependent and -independent regulations. Toxicol Sci 122:526–538

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Lata P, Patel S, Pandey AK, Jain SK, Shanker R, Dhawan A (2011b) Expression profiling of toxicity pathway genes by real-time PCR array in cypermethrin-exposed mouse brain. Toxicol Mech Method 21:193–199

    Article  CAS  Google Scholar 

  • Singh AK, Tiwari MN, Prakash O, Singh MP (2012a) A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol 10:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012b) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33:404–415

    Article  CAS  PubMed  Google Scholar 

  • Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 34:77–96

    Article  CAS  PubMed  Google Scholar 

  • Su T, Cong WD, Long YS, Luo AH, Sun WW, Deng WY, Liao WP (2008) Altered expression of voltage-gated potassium channel 4.2 and voltage-gated potassium channel 4-interacting protein, and changes in intracellular calcium levels following lithium-pilocarpine-induced status epilepticus. Neuroscience 157:566–576

    Article  CAS  PubMed  Google Scholar 

  • Tiwari MN, Singh AK, Ahmad I, Upadhyay G, Singh D, Patel DK, Singh C, Prakash O, Singh MP (2010) Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radical Res 44:1416–1424

    Article  CAS  Google Scholar 

  • Tiwari MN, Singh AK, Agrawal S, Gupta SP, Jyoti A, Shanker R, Prakash O, Singh MP (2012) Cypermethrin alters the expression profile of mRNAs in the adult rat striatum: a putative mechanism of postnatal pre-exposure followed by adulthood re-exposure-enhanced neurodegeneration. Neurotox Res 22:321–334

    Article  CAS  PubMed  Google Scholar 

  • Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1:629–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • USEPA (2013) Pyrethroids and Pyrethrins. http://www.epa.gov/oppsrrd1/reevaluation/pyrethroids–pyrethrins.html

  • Verschoyle R, Aldridge W (1980) Structure-activity relationships of some pyrethroids in rats. Arch Toxicol 45:325–329

    Article  CAS  PubMed  Google Scholar 

  • Vijverberg HP, vanden Bercken J (1990) Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol 21:105–126

    Article  CAS  PubMed  Google Scholar 

  • Vogler M (2012) BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19:67–74

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang X, Yu B, Gu Y, Yuan Y, Yao D, Ding F, Gu X (2012) Gene network revealed involvements of Birc2, Birc3 and Tnfrsf1a in anti-apoptosis of injured peripheral nerves. PLoS ONE 7(9):e43436. doi:10.1371/journal.pone.0043436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth M, Joachim J, Tooze SA (2013) Autophagosome formation—the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Semin Cancer Biol 23:301–309

    Article  CAS  PubMed  Google Scholar 

  • Xi ZQ, Sun JJ, Wang XF, Li MW, Liu XZ, Wang LY, Zhu X, Xiao F, Li JM, Gong Y, Guan LF (2007) HSPBAP1 is found extensively in the anterior temporal neocortex of patients with intractable epilepsy. Synapse 61:741–747

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Xia K, Li B, Zhao G, Zhang Z (2009) KChIP1: a potential modulator to GABAergic system. Acta Biochim Biophys Sin (Shanghai) 41:295–300

    Article  CAS  Google Scholar 

  • Xu C, Wu A, Zhu H, Fang H, Xu L, Jianxin Y, Shan J (2013) Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of BCL-2/BAX balance. Biomed Pharmacother 67:133–139

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H (2003) The role of apaf-1 in programmed cell death: from worm to tumor. Cell Struct Funct 28:3–9

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Zhang Y, Wang C, Fu Z, Liu W, Gan J (2009) Induction of macrophage apoptosis by an organochlorine insecticide acetofenate. Chem Res Toxicol 22:504–510

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann KC, Bonzon C, Green DF (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Project (ALIBIRD-CM Program) Ref. S2013/ABI-2728 from Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Anadón.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, A., Ramos, E., Ares, I. et al. Oxidative stress and gene expression profiling of cell death pathways in alpha-cypermethrin-treated SH-SY5Y cells. Arch Toxicol 91, 2151–2164 (2017). https://doi.org/10.1007/s00204-016-1864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1864-y

Keywords

Navigation