Skip to main content

Advertisement

Log in

Furan-induced transcriptomic and gene-specific DNA methylation changes in the livers of Fischer 344 rats in a 2-year carcinogenicity study

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Furan is a significant food contaminant and a potent hepatotoxicant and rodent liver carcinogen. The carcinogenic effect of furan has been attributed to genotoxic and non-genotoxic, including epigenetic, changes in the liver; however, the mechanisms of the furan-induced liver tumorigenicity are still unclear. The goal of the present study was to investigate the role of transcriptomic and epigenetic events in the development of hepatic lesions in Fischer (F344) rats induced by furan treatment in a classic 2-year rodent tumorigenicity bioassay. High-throughput whole-genome transcriptomic analysis demonstrated distinct alterations in gene expression in liver lesions induced in male F344 rats treated with 0.92 or 2.0 mg furan/kg body weight (bw)/day for 104 weeks. Compared to normal liver tissue, 1336 and 1541 genes were found to be differentially expressed in liver lesions in rats treated with 0.92 and 2.0 mg furan/kg bw/day, respectively, among which 1001 transcripts were differentially expressed at both doses. Pairing transcriptomic and next-generation bisulfite sequencing analyses of the common differentially expressed genes identified 42 CpG island-containing genes in which the methylation level was correlated inversely with gene expression. Forty-eight percent of these genes (20 genes, including Areg, Jag1, and Foxe1) that exhibited the most significant methylation and gene expression changes were involved in key pathways associated with different aspects of liver pathology. Our findings illustrate that gene-specific DNA methylation changes have functional consequences and may be an important component of furan hepatotoxicity and hepatocarcinogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn EY, Kim JS, Kim GJ, Park YN (2013) RASSF1A-mediated regulation of AREG via the Hippo pathway in hepatocellular carcinoma. Mol Cancer Res 11:748–758

    Article  CAS  PubMed  Google Scholar 

  • Banda M, Recio L, Parsons BL (2013) ACB-PCR measurement of spontaneous and furan-induced H-ras codon 61 CAA to CTA and CAA to AAA mutation in B6C3F1 mouse liver. Environ Mol Mutagen 54:659–667

    Article  CAS  PubMed  Google Scholar 

  • Beland FA (2015). Two-year carcinogenicity bioassay of furan in F344 rats. Technical report for NCTR experiment no. E2168.01 (test no. E2168.02)

  • Berasain C, Castillo J, Perugorría MJ et al (2007) Amphiregulin: a new growth factor in hepatocarcinogenesis. Cancer Lett 254:30–41

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulter L, Govaere O, Bird TG et al (2012) Macrophage-derived Wnt opposes Notch signaling to specify cell fate in chronic liver disease. Nat Med 18:572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourd-Boittin K, Bonnier D, Leyme A et al (2011) Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta. Hepatology 54:2173–2184

    Article  CAS  PubMed  Google Scholar 

  • Castillo J, Erroba E, Perugorría MJ et al (2006) Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res 66:6129–6138

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Williams TD, Mally A et al (2012) Gene expression and epigenetic changes by furan in rat liver. Toxicology 292:63–70

    Article  CAS  PubMed  Google Scholar 

  • Churchwell MI, Scheri RC, Von Tungeln LS et al (2015) Evaluation of serum and liver toxicokinetics for furan and liver DNA adduct formation in male Fischer 344 rats. Food Chem Toxicol 86:1–8

    Article  CAS  PubMed  Google Scholar 

  • de Conti A, Kobets T, Tryndyak V et al (2015) Persistence of furan-induced epigenetic aberrations in the livers of F344 rats. Toxicol Sci 144:217–226

    Article  PubMed  Google Scholar 

  • Ding W, Petibone DM, Latendresse JR et al (2012) In vivo genotoxicity of furan in F344 rats at cancer bioassay doses. Toxicol Appl Pharmacol 261:164–171

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Gill S, Curran IH et al (2016) Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats. Arch Toxicol 90:1351–1367

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Harris SC, Su Z et al (2009) ArrayTrack: an FDA and public genomic tool. Methods Mol Biol 563:379–398

    Article  CAS  PubMed  Google Scholar 

  • Faust D, Vondráček J, Krčmář P et al (2013) AhR-mediated changes in global gene expression in rat liver progenitor cells. Arch Toxicol 87:681–698

    Article  CAS  PubMed  Google Scholar 

  • Fernández LP, López-Márquez A, Martínez ÁM et al (2013) New insights into FoxE1 functions: identification of direct FoxE1 targets in thyroid cells. PLoS ONE 8:e62849

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Chen C, Hong L et al (2007) Expression of Jagged1 and its association with hepatitis B virus X protein in hepatocellular carcinoma. Biochem Biophys Res Commun 356:341–347

    Article  CAS  PubMed  Google Scholar 

  • Gurda GT, Zhu Q, Bai H et al (2014) The use of Yes-associated protein expression in the diagnosis of persistent neonatal cholestatic liver disease. Hum Pathol 45:1057–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochstenbach K, van Leeuwen DM, Gmuender H et al (2012) Global gene expression analysis in cord blood reveals gender-specific differences in response to carcinogenic exposure in utero. Cancer Epidemiol Biomark Prev 21:1756–1767

    Article  CAS  Google Scholar 

  • Hofmann JJ, Zovein AC, Koh H et al (2010) Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137:4061–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntzicker EG, Hötzel K, Choy L et al (2015) Differential effects of targeting Notch receptors in a mouse model of liver cancer. Hepatology 61:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Agency for Research on Cancer (IARC) (1995) Furan. In: IARC monographs on the evaluation of carcinogenic risks to humans. Dry cleaning, some solvents and other industrial chemicals, vol 63. International Agency for Research on Cancer, Lyon, pp 393–407

  • Jackson AF, Williams A, Recio L et al (2014) Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan. Toxicol Appl Pharmacol 274:63–77

    Article  CAS  PubMed  Google Scholar 

  • Jennings P, Weiland C, Limonciel A et al (2012) Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol 86:571–589

    Article  CAS  PubMed  Google Scholar 

  • Johansson E, Reynolds S, Anderson M, Maronpot R (1997) Frequency of Ha-ras-1 gene mutations inversely correlated with furan dose in mouse liver tumors. Mol Carcinog 18:199–205

    Article  CAS  PubMed  Google Scholar 

  • Kim K-H, Chen C-C, Alpini G, Lau LF (2015) CCN1 induces hepatic ductular reaction through integrin αvβ5-mediated activation of NF-κB. J Clin Invest 125:1886–1900

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z-Q, Ding W, Sun S-J et al (2012) Cyr61/CCN1 is regulated by Wnt/β-catenin signaling and plays an important role in the progression of hepatocellular carcinoma. PLoS ONE 7:e35754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannaerts I, Leite SB, Verhulst S et al (2015) The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol 63:679–688

    Article  CAS  PubMed  Google Scholar 

  • Maronpot RR, Giles HD, Dykes DJ, Irwin RD (1991) Furan-induced hepatic cholangiocarcinomas in Fischer 344 rats. Toxicol Pathol 19:561–570

    Article  CAS  PubMed  Google Scholar 

  • McDaniel LP, Ding W, Dobrovolsky VN et al (2012) Genotoxicity of furan in Big Blue rats. Mutat Res 742:72–78

    Article  CAS  PubMed  Google Scholar 

  • Moser GJ, Foley J, Burnett M et al (2009) Furan-induced dose-response relationships for liver cytotoxicity, cell proliferation, and tumorigenicity (furan-induced liver tumorigenicity). Exp Toxicol Pathol 61:101–111

    Article  CAS  PubMed  Google Scholar 

  • Neuwirth C, Mosesso P, Pepe G et al (2012) Furan carcinogenicity: DNA binding and genotoxicity of furan in rats in vivo. Mol Nutr Food Res 56:1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NTP (1993) NTP technical report on the toxicology and carcinogenesis studies of furan (CAS no. 110-00-9) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program technical report 402, pp 1–286

  • Park SM (2012) The crucial role of cholangiocytes in cholangiopathies. Gut Liver 6:295–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Perra A, Kowalik MA, Ghiso E et al (2014) YAP activation is an early event and a potential therapeutic target in liver cancer development. J Hepatol 61:1088–1096

    Article  CAS  PubMed  Google Scholar 

  • Perugorria MJ, Latasa MU, Nicou A et al (2008) The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology 48:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Peterson LA (2006) Electrophilic intermediates produced by bioactivation of furan. Drug Metab Rev 38:615–626

    Article  CAS  PubMed  Google Scholar 

  • Roskams T, Desmet V (1998) Ductular reaction and its diagnostic significance. Semin Diagn Pathol 15:259–269

    CAS  PubMed  Google Scholar 

  • Roy K, Wu Y, Meitzler JL et al (2015) NADPH oxidases and cancer. Clin Sci 128:863–875

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Terrell AN, Huynh M, Grill AE et al (2014) Mutagenicity of furan in female Big Blue B6C3F1 mice. Mutat Res 770:46–54

    Article  CAS  Google Scholar 

  • Tryndyak VP, Han T, Muskhelishvili L et al (2011) Coupling global methylation and gene expression profiles reveal key pathophysiological events in liver injury induced by a methyl-deficient diet. Mol Nutr Food Res 55:411–418

    Article  CAS  PubMed  Google Scholar 

  • Tschaharganeh DF, Chen X, Latzko P et al (2013) Yes-associated protein up-regulates Jagged-1 and activates the NOTCH pathway in human hepatocellular carcinoma. Gastroenterology 144:1530–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdelho Machado M, Michelotti GA, Almeida Pereira T et al (2015) Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J Hepatol 63:962–970

    Article  Google Scholar 

  • Wang J, Shao M, Liu M et al (2015) PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma. Biochem Biophys Res Commun 463:839–845

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ji J-Y, Yu M et al (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11:1444–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yang Y, Yang T et al (2015) Double-negative feedback loop between microRNA-422a and forkhead box (FOX)G1/Q1/E1 regulates hepatocellular carcinoma tumor growth and metastasis. Hepatology 61:561–573

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Brewer DS, Arlt VM et al (2014) Benzo[a]pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genom 15:880

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor P. Pogribny.

Additional information

The views expressed in this manuscript do not necessarily represent those of the US Food and Drug Administration.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tryndyak, V., de Conti, A., Doerge, D.R. et al. Furan-induced transcriptomic and gene-specific DNA methylation changes in the livers of Fischer 344 rats in a 2-year carcinogenicity study. Arch Toxicol 91, 1233–1243 (2017). https://doi.org/10.1007/s00204-016-1786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1786-8

Keywords

Navigation