Alfaro-Moreno E, Nawrot TS et al (2008) Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10. Eur Respir J 32(5):1184–1194
CAS
Article
PubMed
Google Scholar
Anjilvel S, Asgharian B (1995) A multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol 28(1):41–50
CAS
Article
PubMed
Google Scholar
Ankley GT, Bennett RS et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741
CAS
Article
PubMed
Google Scholar
Asgharian B, Price OT et al (2014) Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhal Toxicol 26(14):829–842
CAS
Article
PubMed
PubMed Central
Google Scholar
Banga A, Witzmann FA et al (2012) Functional effects of nanoparticle exposure on Calu-3 airway epithelial cells. Cell Physiol Biochem 29(1–2):197–212
CAS
Article
PubMed
PubMed Central
Google Scholar
Bellmann B, Muhle H et al (2001) Effects of nonfibrous particles on ceramic fiber (RCF1) toxicity in rats. Inhal Toxicol 13(10):877–901
CAS
Article
PubMed
Google Scholar
Bhattacharya K, Andón FT et al (2013) Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev 65(15):2087–2097
CAS
Article
PubMed
Google Scholar
Bouwmeester H, Lynch I et al (2011) Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5(1):1–11
CAS
Article
PubMed
Google Scholar
Bove PF, Dang H et al (2013) Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 50(4):767–776
Article
Google Scholar
Carterson AJ, Honer zu Bentrup K et al (2005) A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun 73(2):1129–1140
CAS
Article
PubMed
PubMed Central
Google Scholar
Cei D, Ahluwalia A et al (2014) Development of a dynamic model of the alveolar interface for the study of aerosol deposition. In: Proceedings of the XIX international conference on mechanics in medicine and biology, 2–5 September 2014, Bologna, Italy
Cheng Y-S (1986) Bivariate lognormal distribution for characterizing asbestos fiber aerosols. Aerosol Sci Technol 5(3):359–368
CAS
Article
Google Scholar
Chortarea S, Clift MJ et al (2015) Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology 9(8):983–993
Article
PubMed
Google Scholar
Coecke S, Balls M et al (2005) Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33(3):261–287
CAS
PubMed
Google Scholar
DeLoid G, Cohen JM et al (2014) Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5:3514
Article
PubMed
PubMed Central
Google Scholar
Donaldson K, Murphy F et al (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7(1):5
Article
PubMed
PubMed Central
Google Scholar
Dong X, Liu L et al (2015) Effects of carboxylated multiwalled carbon nanotubes on the function of macrophages. J Nanomater 2015:638760-1–638760-8
Google Scholar
ESAC (2008) ESAC statement on the use of FCS and other animal-derived supplements. http://eurl-ecvam.jrc.ec.europa.eu/about-ecvam/archive-publications/publication/ESAC28_statement_FCS_20080508.pdf
Fedan J, Thompson J et al (2014) Inhalation of multi-walled carbon nanotubes affects lung resistance and compliance and evokes airway hyperreactivity to methacholine in rats (660.1). FASEB J 28(1 Supplement)
Foucaud L, Wilson MR et al (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174(1–3):1–9
CAS
Article
PubMed
Google Scholar
Foucaud L, Goulaouic S et al (2010) Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule? Toxicol In Vitro 24(6):1512–1520
CAS
Article
PubMed
Google Scholar
Francis AP, Ganapathy S et al (2015) One time nose-only inhalation of MWCNTs: exploring the mechanism of toxicity by intermittent sacrifice in Wistar rats. Toxicol Rep 2:111–120
CAS
Article
Google Scholar
Gangwal S, Brown JS et al (2011) Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ Health Perspect 119(11):1539–1546
CAS
Article
PubMed
PubMed Central
Google Scholar
Gliga AR, Skoglund S et al (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11
Article
PubMed
PubMed Central
Google Scholar
Godwin H, Nameth C et al (2015) Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9(4):3409–3417
CAS
Article
PubMed
Google Scholar
Hanes J, Schaffitzel C et al (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18(12):1287–1292
CAS
Article
PubMed
Google Scholar
Haniu H, Saito N et al (2014) Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells. Int J Nanomed 9:1979–1990
Article
Google Scholar
Hartung T, Balls M et al (2002) Good cell culture practice. ECVAM good cell culture practice task force report 1. Altern Lab Anim 30(4):407–414
CAS
PubMed
Google Scholar
Hermanns MI, Unger RE et al (2004) Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest 84(6):736–752
CAS
Article
PubMed
Google Scholar
Herzog F, Clift MJ et al (2013) Exposure of silver-nanoparticles and silver–ions to lung cells in vitro at the air–liquid interface. Part Fibre Toxicol 10(1):11
CAS
Article
PubMed
PubMed Central
Google Scholar
Herzog F, Loza K et al (2014) Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein J Nanotechnol 5:1357–1370
Article
PubMed
PubMed Central
Google Scholar
Hinderliter PM, Minard KR et al (2010) ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7(1):36
CAS
Article
PubMed
PubMed Central
Google Scholar
Holsapple MP, Farland WH et al (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88(1):12–17
CAS
Article
PubMed
Google Scholar
Horvath L, Umehara Y et al (2015) Engineering an in vitro air–blood barrier by 3D bioprinting. Sci Rep 5:7974
CAS
Article
PubMed
PubMed Central
Google Scholar
Huh D, Matthews BD et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668
CAS
Article
PubMed
Google Scholar
Hussain S, Sangtian S et al (2014) Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol 11:28
Article
PubMed
PubMed Central
Google Scholar
InLiveTox (2012) Development and evaluation of a novel tool for physiologically accurate data generation. http://www.inlivetox.eu/fileadmin/user/pdf/InLiveTox-Final_publishable_report.pdf
Jackson G, Mankus C et al (2013) A triple cell co-culture model of the air–blood barrier reconstructed from primary human cells. Toxicol Lett 221. doi:10.1016/j.toxlet.2013.05.270
Jarabek AM, Asgharian B et al (2005) Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP). Inhal Toxicol 17(7–8):317–334
CAS
Article
PubMed
Google Scholar
JRC (2014) Multi-walled carbon nanotubes, NM-400, NM-401, NM-402, NM-403: characterisation and physico-chemical properties. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC91205/mwcnt-online.pdf
Jud C, Clift MJ et al (2013) Nanomaterials and the human lung: what is known and what must be deciphered to realise their potential advantages? Swiss Med Wkly 143:w13758
PubMed
Google Scholar
Kim JS, Sung JH et al (2014) In vivo genotoxicity evaluation of lung cells from Fischer 344 rats following 28 days of inhalation exposure to MWCNTs, plus 28 days and 90 days post-exposure. Inhal Toxicol 26(4):222–234
CAS
Article
PubMed
Google Scholar
Klein CL, Wiench K et al (2012) Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol 86(7):1137–1151
CAS
Article
PubMed
Google Scholar
Klein SG, Serchi T et al (2013) An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol 10:31
CAS
Article
PubMed
PubMed Central
Google Scholar
Labib S, Williams A et al (2016) Nano-risk science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol 13(1):1–17
Google Scholar
Lehman JH, Terrones M et al (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602
CAS
Article
Google Scholar
Lehr C-M (2002) Cell culture models of biological barriers: in vitro test systems for drug absorption and delivery. Taylor & Francis, London
Book
Google Scholar
Lenz AG, Karg E et al (2009) A dose-controlled system for air–liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol 6:32
Article
PubMed
PubMed Central
Google Scholar
Li R, Wang X et al (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7(3):2352–2368
CAS
Article
PubMed
PubMed Central
Google Scholar
Ma-Hock L, Treumann S et al (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112(2):468–481
CAS
Article
PubMed
Google Scholar
Mast RW, Hesterberg TW et al (1994) Chronic inhalation and biopersistence of refractory ceramic fiber in rats and hamsters. Environ Health Perspect 102(Suppl 5):207–209
CAS
Article
PubMed
PubMed Central
Google Scholar
McCarthy J, Gong X et al (2011) Polystyrene nanoparticles activate ion transport in human airway epithelial cells. Int J Nanomed 6:1343–1356
CAS
Article
Google Scholar
Mishra A, Rojanasakul Y et al (2012) Assessment of pulmonary fibrogenic potential of multiwalled carbon nanotubes in human lung cells. J Nanomater 2012:930931-1–930931-11
Google Scholar
Mishra A, Stueckle TA et al (2015) Identification of TGF-Beta Receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis. Am J Physiol Lung Cell Mol Physiol 309(8):821–833
Google Scholar
Moss OR, Wong BA, Asgharian B (1994) Bimodal, bivariate, log-normal distribution in the application of inhalation toxicology specific to the measurement of fiber and particle dosimetry. In: Dungworth DL et al (eds) Toxic and carcinogenic effects of solid particles in the respiratory tract, ILSI Press, Washington, DC, pp 623–628
Google Scholar
Mudway IS, Stenfors N et al (2004) An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch Biochem Biophys 423(1):200–212
CAS
Article
PubMed
Google Scholar
Nel A, Xia T et al (2012) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607–621
Article
PubMed
PubMed Central
Google Scholar
NIOSH (2013) Current Intelligence Bulletin 65: Occupational exposure to carbon nanotubes and nanofibers. http://www.cdc.gov/niosh/docs/2013-145/pdfs/2013-145.pdf
NRC (2007) Toxicity testing in the twenty-first century: a vision and a strategy. Washington, DC, p 146
Nymark P, Catalán J et al (2013) Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology 313(1):38–48
CAS
Article
PubMed
Google Scholar
Oberdorster G, Maynard A et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8
Article
PubMed
PubMed Central
Google Scholar
OECD (2005) Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono%282005%2914
OECD (2009) Test No. 413: subchronic inhalation toxicity: 90-day study. OECD Publishing
OECD (2012a) Important issues on risk assessment of manufactured nanomaterials. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)8&doclanguage=en
OECD (2012b) Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. Series on the Safety of Manufactured Nanomaterials No. 36. http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2012)40&doclanguage=en
Oomen AG, Bos PM et al (2014) Concern-driven integrated approaches to nanomaterial testing and assessment-report of the NanoSafety Cluster Working Group 10. Nanotoxicology 8(3):334–348
Article
PubMed
Google Scholar
Palecanda A, Kobzik L (2001) Receptors for unopsonized particles: the role of alveolar macrophage scavenger receptors. Curr Mol Med 1(5):589–595
CAS
Article
PubMed
Google Scholar
Poland CA, Duffin R et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428
CAS
Article
PubMed
Google Scholar
Poulsen SS, Saber AT et al (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284(1):16–32
CAS
Article
PubMed
Google Scholar
RIVM (2002) Multiple Path Particle Dosimetry Model (MPPD v 1.0): a model for human and rat airway particle dosimetry. Model available online at: http://www.ara.com/products/mppd.htm. National Institute for Public Health and the Environment, Bilthoven
Rothen-Rutishauser BM, Kiama SG et al (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32(4):281–289
CAS
Article
PubMed
Google Scholar
Rothen-Rutishauser B, Blank F et al (2008) In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 4(8):1075–1089
CAS
Article
PubMed
Google Scholar
Rotoli BM, Bussolati O et al (2008) Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178(2):95–102
CAS
Article
PubMed
Google Scholar
Sanchez VC, Weston P et al (2011) A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part Fibre Toxicol 8:17
CAS
Article
PubMed
PubMed Central
Google Scholar
Sargent LM, Porter DW et al (2014) Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 11:3
Article
PubMed
PubMed Central
Google Scholar
Schurch D, Vanhecke D et al (2014) Modeling nanoparticle-alveolar epithelial cell interactions under breathing conditions using captive bubble surfactometry. Langmuir 30(17):4924–4932
CAS
Article
PubMed
Google Scholar
Scott-Fordsmand JJ, Pozzi-Mucelli S et al (2014) A unified framework for nanosafety is needed. Nano Today 9(5):546–549
CAS
Article
Google Scholar
SOR/2005-247 (2005) New substances notification regulations (chemicals and polymers). http://laws-lois.justice.gc.ca/eng/regulations/SOR-2005-247/page-1.html
Steimer A, Haltner E et al (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18(2):137–182
CAS
Article
PubMed
Google Scholar
Stöber W (1972) Dynamic shape factors of nonspherical aerosol particles. In: Mercer TT, Morrow PE, Stöber W (eds) Assessment of airborne particles, Charles C Thomas, Springfield, IL, pp 249–289
Stone V, Pozzi-Mucelli S et al (2014) ITS-NANO—prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol 11:9
Article
PubMed
PubMed Central
Google Scholar
Sturm R (2009) A theoretical approach to the deposition of cancer-inducing asbestos fibers in the human respiratory tract. Open Lung Cancer J 2:1–11
Article
Google Scholar
Sturm R (2011) A computer model for the simulation of fiber-cell interaction in the alveolar region of the respiratory tract. Comput Biol Med 41(7):565–573
CAS
Article
PubMed
Google Scholar
Sturm R, Hofmann W (2006) A computer program for the simulation of fiber deposition in the human respiratory tract. Comput Biol Med 36(11):1252–1267
Article
PubMed
Google Scholar
Sturm R, Hofmann W (2009) A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract. J Hazard Mater 170(1):210–218
CAS
Article
PubMed
Google Scholar
Taquahashi Y, Ogawa Y et al (2013) Improved dispersion method of multi-wall carbon nanotube for inhalation toxicity studies of experimental animals. J Toxicol Sci 38(4):619–628
CAS
Article
PubMed
Google Scholar
Taylor AJ, McClure CD et al (2014) Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS One 9(9):e106870
Article
PubMed
PubMed Central
Google Scholar
Teeguarden JG, Hinderliter PM et al (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312
CAS
Article
PubMed
Google Scholar
US EPA (2015) Control of Nanoscale Materials under the Toxic Substances Control Act. http://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under. Accessed 5 Dec 2015
van Berlo D, Wilhelmi V et al (2014) Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88(9):1725–1737
Article
PubMed
Google Scholar
Vance ME, Kuiken T et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780
CAS
Article
PubMed
PubMed Central
Google Scholar
Vietti G, Ibouraadaten S et al (2013) Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay. Part Fibre Toxicol 10:52
Article
PubMed
PubMed Central
Google Scholar
Vincent JH (2005) Health-related aerosol measurement: a review of existing sampling criteria and proposals for new ones. J Environ Monit 7(11):1037–1053
CAS
Article
PubMed
Google Scholar
Wang X, Xia T et al (2011) Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5(12):9772–9787
CAS
Article
PubMed
PubMed Central
Google Scholar
Winkler DA, Mombelli E et al (2012) Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 313(1):15–23
Article
PubMed
Google Scholar
Zielinski H, Mudway IS et al (1999) Modeling the interactions of particulates with epithelial lining fluid antioxidants. Am J Physiol Lung Cell Mol Physiol 277(4):L719–L726
CAS
Google Scholar