Skip to main content
Log in

RNAi in murine hepatocytes: the agony of choice—a study of the influence of lipid-based transfection reagents on hepatocyte metabolism

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Primary hepatocyte cell cultures are widely used for studying hepatic diseases with alterations in hepatic glucose and lipid metabolism, such as diabetes and non-alcoholic fatty liver disease. Therefore, small interfering RNAs (siRNAs) provide a potent and specific tool to elucidate the signaling pathways and gene functions involved in these pathologies. Although RNA interference (RNAi) in vitro is frequently used in these investigations, the metabolic alterations elucidated by different siRNA delivery strategies have hardly been investigated in transfected hepatocytes. To elucidate the influence of the most commonly used lipid-based transfection reagents on cultured primary hepatocytes, we studied the cytotoxic effects and transfection efficiencies of INTERFERin®, Lipofectamine®RNAiMAX, and HiPerFect®. All of these transfection agents displayed low cytotoxicity (5.6–9.0 ± 1.3–3.4 %), normal cell viability, and high transfection efficiency (fold change 0.08–0.13 ± 0.03–0.05), and they also favored the satisfactory down-regulation of target gene expression. However, when effects on the metabolome and lipidome were studied, considerable differences were observed among the transfection reagents. Cellular triacylglycerides levels were either up- or down-regulated [maximum fold change: INTERFERin® (48 h) 2.55 ± 0.34, HiPerFect® (24 h) 0.79 ± 0.08, Lipofectamine®RNAiMAX (48 h) 1.48 ± 0.21], and mRNA levels of genes associated with lipid metabolism were differentially affected. Likewise, metabolic functions such as amino acid utilization from were perturbed (alanine, arginine, glycine, ornithine, and pyruvate). In conclusion, these findings demonstrate that the choice of non-viral siRNA delivery agent is critical in hepatocytes. This should be remembered, especially if RNA silencing is used for studying hepatic lipid homeostasis and its regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnihotri S, Wolf A, Picard D et al (2009) GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system. Oncogene 28(34):3033–3046

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Oku N (2014) Systemic delivery of small RNA using lipid nanoparticles. Biol Pharm Bull 37(2):201–205

    Article  CAS  PubMed  Google Scholar 

  • Bermudez O, Hennen E, Koch I et al (2013) Gli1 mediates lung cancer cell proliferation and Sonic Hedgehog-dependent mesenchymal cell activation. PLoS One 8(5):e63226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi SH, Estarás C, Moresco JJ et al (2013) α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Gene Dev 27(22):2473–2488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clemenz M, Frost N, Schupp M et al (2008) Liver-specific peroxisome proliferator-activated receptor alpha target gene regulation by the angiotensin type 1 receptor blocker telmisartan. Diabetes 57(5):1405–1413

    Article  CAS  PubMed  Google Scholar 

  • Ferretti E, de Smaele E, Miele E et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27(19):2616–2627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fire A (1999) RNA-triggered gene silencing. Trends Genet 15(9):358–363

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  • Gao S, Seker E, Casali M et al (2012) Ex vivo gene delivery to hepatocytes: techniques, challenges, and underlying mechanisms. Ann Biomed Eng 40(9):1851–1861

    Article  PubMed Central  PubMed  Google Scholar 

  • Gebhardt R, Lerche KS, Gotschel F et al (2010) 4-Aminoethylamino-emodin—a novel potent inhibitor of GSK-3beta—acts as an insulin-sensitizer avoiding downstream effects of activated beta-catenin. J Cell Mol Med 14(6A):1276–1293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hengstler JG, Godoy P, Bolt HM (2009) The dilemma of cultivated hepatocytes. Arch Toxicol 83(2):101–103

    Article  CAS  PubMed  Google Scholar 

  • Herzog R, Schwudke D, Schuhmann K et al (2011) A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol 12(1):R8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofmann U, Maier K, Niebel A et al (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: Part I. Experimental observations. Biotechnol Bioeng 100(2):344–354

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Wright CD, Kobayashi S et al (2008) GATA4 is a survival factor in adult cardiac myocytes but is not required for alpha1A-adrenergic receptor survival signaling. Am J Physiol Heart Circ Physiol 295(2):H699–H707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiefer K, Clement J, Garidel P et al (2004) Transfection efficiency and cytotoxicity of nonviral gene transfer reagents in human smooth muscle and endothelial cells. Pharm Res 21(6):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Kilroy G, Burk DH, Floyd ZE et al (2009) High efficiency lipid-based siRNA transfection of adipocytes in suspension. PLoS One 4(9):e6940

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397(8):3173–3178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klingmuller U, Bauer A, Bohl S et al (2006) Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Syst Biol (Stevenage) 153(6):433–447

    Article  CAS  Google Scholar 

  • Lee H, Kang R, Bae S et al (2011) AICAR, an activator of AMPK, inhibits adipogenesis via the WNT/β-catenin pathway in 3T3-L1 adipocytes. Int J Mol Med 28(1):65–71

    CAS  PubMed  Google Scholar 

  • Li Z, Agellon LB, Allen TM et al (2006) The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3(5):321–331

    Article  CAS  PubMed  Google Scholar 

  • Liebisch G, Binder M, Schifferer R et al (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Maier K, Hofmann U, Reuss M et al (2010) Dynamics and control of the central carbon metabolism in hepatoma cells. BMC Syst Biol 4:54

    Article  PubMed Central  PubMed  Google Scholar 

  • Matz-Soja M, Aleithe S, Marbach E et al (2014) Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels. Cell Commun Signal 12(1):11

    Article  PubMed Central  PubMed  Google Scholar 

  • Nadendla SK, Hazan A, Ward M et al (2011) GLI1 confers profound phenotypic changes upon LNCaP prostate cancer cells that include the acquisition of a hormone independent state. PLoS One 6(5):e20271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakhaei-Nejad M, Zhang Q, Murray AG (2010) Endothelial IQGAP1 regulates efficient lymphocyte transendothelial migration. Eur J Immunol 40(1):204–213

    Article  CAS  PubMed  Google Scholar 

  • Niklas J, Bonin A, Mangin S et al (2012) Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load. BMB Rep 45(7):396–401

    Article  CAS  PubMed  Google Scholar 

  • Noto PB, Bukhtiyarov Y, Shi M et al (2012) Regulation of sphingomyelin phosphodiesterase acid-like 3A gene (SMPDL3A) by liver X receptors. Mol Pharmacol 82(4):719–727

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Kai M, Odate S et al (2011) Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci 102(6):1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Park J, Surendran S, Kamendulis LM et al (2011) Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies. BMC research notes 4:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philipp A, Meyer M, Wagner E (2008) Extracellular targeting of synthetic therapeutic nucleic acid formulations. Curr Gene Ther 8(5):324–334

    Article  CAS  PubMed  Google Scholar 

  • Pritchett J, Harvey E, Athwal V et al (2012) Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology 56(3):1108–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuhmann K, Almeida R, Baumert M et al (2012) Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J Mass Spectrom 47(1):96–104

    Article  CAS  PubMed  Google Scholar 

  • Semple SC, Akinc A, Chen J et al (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–176

    Article  CAS  PubMed  Google Scholar 

  • Stenson BM, Rydén M, Steffensen KR et al (2009) Activation of liver X receptor regulates substrate oxidation in white adipocytes. Endocrinology 150(9):4104–4113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rolf Gebhardt for valuable discussion and Doris Mahn, Fatina Siwczak, Robert Karandi, and Claudia Eser for excellent technical assistance. We also thank Maria Thomas for fruitful discussion at the beginning of the project. This work was founded by the German Federal Ministry of Education and Research (BMBF; VIRTUAL-LIVER network, Grants FKZ 0315735, 0315736, and 0315775). UH was supported by the Robert-Bosch Foundation (Stuttgart, Germany).

Author contributions

MMS realized the transfection experiments. JB realized the metabolome experiments, and UH made the metabolome measurements. SV made the metabolome heat map. MMS and JB contributed the cell culture and cytotoxicity and viability experiments expertise. MMS and CT realized the lipidome experiments, and SS and AS made the lipidome measurements. KA and CR contributed to qPCR experiments. MMS and JB developed the concept and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madlen Matz-Soja.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böttger, J., Arnold, K., Thiel, C. et al. RNAi in murine hepatocytes: the agony of choice—a study of the influence of lipid-based transfection reagents on hepatocyte metabolism. Arch Toxicol 89, 1579–1588 (2015). https://doi.org/10.1007/s00204-015-1571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1571-0

Keywords

Navigation