Skip to main content

Advertisement

Log in

Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cadmium is a neurotoxic compound which induces cognitive alterations similar to those produced by Alzheimer’s disease (AD). However, the mechanism through which cadmium induces this effect remains unknown. In this regard, we described in a previous work that cadmium blocks cholinergic transmission and induces a more pronounced cell death on cholinergic neurons from basal forebrain which is partially mediated by AChE overexpression. Degeneration of basal forebrain cholinergic neurons, as happens in AD, results in memory deficits attributable to the loss of cholinergic modulation of hippocampal synaptic circuits. Moreover, cadmium has been described to activate GSK-3β, induce Aβ protein production and tau filament formation, which have been related to a selective loss of basal forebrain cholinergic neurons and development of AD. The present study is aimed at researching the mechanisms of cell death induced by cadmium on basal forebrain cholinergic neurons. For this purpose, we evaluated, in SN56 cholinergic mourine septal cell line from basal forebrain region, the cadmium toxic effects on neuronal viability through muscarinic M1 receptor, AChE splice variants, GSK-3β enzyme, Aβ and tau proteins. This study proves that cadmium induces cell death on cholinergic neurons through blockade of M1 receptor, overexpression of AChE-S and GSK-3β, down-regulation of AChE-R and increase in Aβ and total and phosphorylated tau protein levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on cholinergic neurons and suggest that cadmium could mediate these mechanisms by M1R blockade through AChE splices altered expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Andersson H, Petersson-Grawe K, Lindqvist E, Luthman J, Oskarsson A, Olson L (1997) Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring. Neurotoxicol Teratol 19(2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Atri A, Sherman S, Norman KA, Kirchhoff BA, Nicolas MM, Greicius MD, Cramer SC, Breiter HC, Hasselmo ME, Stern CE (2004) Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav Neurosci 118(1):223–236

    Article  CAS  PubMed  Google Scholar 

  • ATSDR. Agency for Toxic Substances and Disease Registry (2012) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Auermann E, Dassler HG, Cumbrowski J, Kneuer M, Jacobi J, Kuhn H (1979) Cadmium content of vegetable foods in the effective range of a lead smelting plant. Nahrung 23(9–10):875–890

    Article  CAS  PubMed  Google Scholar 

  • Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384

    Article  CAS  PubMed  Google Scholar 

  • Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella SA, Adel C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30(2):346–358

    Article  CAS  PubMed  Google Scholar 

  • Berson A, Soreq H (2010) It all starts at the ends: multifaceted involvement of C- and N-terminally modified cholinesterases in Alzheimer’s disease. Rambam Maimonides Med J 1(2):e0014

    Article  PubMed  PubMed Central  Google Scholar 

  • Berson A, Knobloch M, Hanan M, Kirchhoff BA, Nicolas MM, Greicius MD, Cramer SC, Breiter HC, Hasselmo ME, Stern CE (2008) Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 131(Pt 1):109–119

    PubMed  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760

    Article  CAS  PubMed  Google Scholar 

  • Bilgen I, Oner G, Edremitlioglu M, Alkan Z, Cirrik S (2003) Involvement of cholinoceptors in cadmium-induced endothelial dysfunction. J Basic Clin Physiol Pharmacol 14(1):55–76

    Article  CAS  PubMed  Google Scholar 

  • Birikh KR, Sklan EH, Shoham S, Soreq H (2003) Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc Natl Acad Sci USA 100(1):283–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond CE, Patel P, Crouch L, Tetlow N, Day T, Abu-Hayyeh S, Williamson C, Greenfield SA (2006) Astroglia up-regulate transcription and secretion of ‘readthrough’ acetylcholinesterase following oxidative stress. Eur J Neurosci 24(2):381–386

    Article  CAS  PubMed  Google Scholar 

  • Budd DC, McDonald J, Emsley N, Cain K, Tobin AB (2003) The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 278(21):19565–19573

    Article  CAS  PubMed  Google Scholar 

  • Budd DC, Spragg EJ, Ridd K, Tobin AB (2004) Signalling of the M3-muscarinic receptor to the anti-apoptotic pathway. Biochem J 381(Pt 1):43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanari ML, Garcia-Ayllon MS, Belbin O, Galceran J, Lleo A, Saez-Valero J (2014) Acetylcholinesterase modulates presenilin-1 levels and gamma-secretase activity. J Alzheimer’s Dis 41(3):911–924

    CAS  Google Scholar 

  • Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI (2010) Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 30(12):4190–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sarno P, Shestopal SA, King TD, Zmijewska A, Song L, Jope RS (2003) Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem 278(13):11086–11093

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Pino J, Zeballos G, Anadon MJ, Capo MA, Diaz MJ, Garcia J, Frejo MT (2014) Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: a cholinesterase dependent mechanism. Toxicology 325:151–159

    Article  PubMed  Google Scholar 

  • Dori A, Cohen J, Silverman WF, Pollack Y, Soreq H (2005) Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical development. Cereb Cortex 15(4):419–430

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  CAS  PubMed  Google Scholar 

  • Evron T, Greenberg D, Mor TS, Soreq H (2007) Adaptive changes in acetylcholinesterase gene expression as mediators of recovery from chemical and biological insults. Toxicology 233(1–3):97–107

    Article  CAS  PubMed  Google Scholar 

  • Falnoga I, Tusek-Znidaric M, Horvat M, Stegnar P (2000) Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers. Environ Res 84(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Fisher A (2012) Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 120(Suppl 1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Ghelardini C, Galeotti N, Matucci R, Bellucci C, Gualtieri F, Capaccioli S, Quattrone A, Bartolini A (1999) Antisense ‘knockdowns’ of M1 receptors induces transient anterograde amnesia in mice. Neuropharmacology 38(3):339–348

    Article  CAS  PubMed  Google Scholar 

  • Gill TM, Gallagher M (1998) Evaluation of muscarinic M2 receptor sites in basal forebrain and brainstem cholinergic systems of behaviorally characterized young and aged long-evans rats. Neurobiol Aging 19(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Giraldo E, Lloret A, Fuchsberger T, Vina J (2014) Abeta and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2:873–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkanti V, Stolakis V, Kalafatakis K, Liapi C, Zissis KM, Zarros A, Tsakiris S (2014) Postnuclear supernatants of rat brain regions as substrates for the in vitro assessment of cadmium-induced neurotoxicity on acetylcholinesterase activity. Biol Trace Elem Res 158(1):87–89

    Article  CAS  PubMed  Google Scholar 

  • Goncalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM, Schetinger MR (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Graham ES, Woo KK, Aalderink M, Fry S, Greenwood JM, Glass M, Dragunow M (2013) M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells. PLoS One 8(9):e72011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg DS, Toiber D, Berson A, Soreq H (2010) Acetylcholinesterase variants in Alzheimer’s disease: from neuroprotection to programmed cell death. Neurodegener Dis 7(1–3):60–63

    Article  CAS  PubMed  Google Scholar 

  • Grisaru D, Pick M, Perry C, Sklan EH, Almog R, Goldberg I, Naparstek E, Lessing JB, Soreq H, Deutsch V (2006) Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol 176(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Reyes EY, Albores A, Rios C (1998) Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone-induced metallothionein. Toxicology 131(2–3):145–154

    Article  CAS  PubMed  Google Scholar 

  • Hammond DN, Lee HJ, Tonsgard JH, Wainer BH (1990) Development and characterization of clonal cell lines derived from septal cholinergic neurons. Brain Res 512(2):190–200

    Article  CAS  PubMed  Google Scholar 

  • Hawkes C, Jhamandas JH, Kar S (2005) Selective loss of basal forebrain cholinergic neurons by 192 IgG-saporin is associated with decreased phosphorylation of Ser glycogen synthase kinase-3beta. J Neurochem 95(1):263–272

    Article  CAS  PubMed  Google Scholar 

  • Hedlund B, Bartfai T (1979) The importance of thiol- and disulfide groups in agonist and antagonist binding to the muscarinic receptor. Mol Pharmacol 15(3):531–544

    CAS  PubMed  Google Scholar 

  • Hedlund B, Gamarra M, Bartfai T (1979) Inhibition of striatal muscarinic receptors in vivo by cadmium. Brain Res 168(1):216–218

    Article  CAS  PubMed  Google Scholar 

  • Hossain S, Liu HN, Nguyen M, Shore G, Almazan G (2009) Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. Neurotoxicology 30(4):544–554

    Article  CAS  PubMed  Google Scholar 

  • Hudgens ED, Ji L, Carpenter CD, Petersen SL (2009) The gad2 promoter is a transcriptional target of estrogen receptor (ER)alpha and ER beta: a unifying hypothesis to explain diverse effects of estradiol. J Neurosci 29(27):8790–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCS. International program on chemical safety (1992) Environmental health criteria 134. Cadmium. WHO, Geneva

    Google Scholar 

  • Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 11(21):24

    Google Scholar 

  • Jin T, Lu J, Nordberg M (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 19(4–5):529–535

    CAS  PubMed  Google Scholar 

  • Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29(6):427–441

    PubMed  PubMed Central  Google Scholar 

  • Klein AM, Kowall NW, Ferrante R (1999) Neurotoxicity and oxidative damage of beta amyloid 1–42 versus beta amyloid 1–40 in the mouse cerebral cortex. Ann NY Acad Sci 893:314–320

    Article  CAS  PubMed  Google Scholar 

  • Lahmy V, Meunier J, Malmstrom S, Naert G, Givalois L, Kim SH, Villard V, Vamvakides A, Maurice T (2013) Blockade of Tau hyperphosphorylation and Abeta(1)(−)(4)(2) generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and sigma(1) receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 38(9):1706–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lv Y, Yu S, Zhao H, Yao L (2012) The effect of cadmium on Abeta levels in APP/PS1 transgenic mice. Exp Ther Med 4(1):125–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenboim L, Pinkas-Kramarski R, Sokolovsky M, Stein R (1995) Activation of muscarinic receptors inhibits apoptosis in PC12M1 cells. J Neurochem 64(6):2491–2499

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Luchese C, Brandao R, de Oliveira R, Nogueira CW, Santos FW (2007) Efficacy of diphenyl diselenide against cerebral and pulmonary damage induced by cadmium in mice. Toxicol Lett 173(3):181–190

    Article  CAS  PubMed  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080):304–307

    Article  CAS  PubMed  Google Scholar 

  • Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Pari L, Murugavel P (2007) Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology 234(1–2):44–50

    Article  CAS  PubMed  Google Scholar 

  • Pavia J, de Ceballos ML, Sanchez de la Cuesta F (1998) Alzheimer’s disease: relationship between muscarinic cholinergic receptors, beta-amyloid and tau proteins. Fundam Clin Pharmacol 12(5):473–481

    Article  CAS  PubMed  Google Scholar 

  • Rojo AI, Sagarra MR, Cuadrado A (2008) GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem 105(1):192–202

    Article  CAS  PubMed  Google Scholar 

  • Salmon A, Erb C, Meshorer E, Ginzberg D, Adani Y, Rabinovitz I, Amitai G, Soreq H (2005) Muscarinic modulations of neuronal anticholinesterase responses. Chem Biol Interact 157–158:105–113

    Article  PubMed  Google Scholar 

  • Sarchielli E, Pacini S, Morucci G, Punzi T, Marini M, Vannelli GB, Gulisano M (2012) Cadmium induces alterations in the human spinal cord morphogenesis. Biometals 25(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Scheiderer CL, McCutchen E, Thacker EE, Kolasa K, Ward MK, Parsons D, Harrell LE, Dobrunz LE, McMahon LL (2006) Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3-CA1 synapses. J Neurosci 26(14):3745–3756

    Article  CAS  PubMed  Google Scholar 

  • Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, Soreq H (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218(1):59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15(5):400–405

    Article  CAS  PubMed  Google Scholar 

  • Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5(3):293–302

    Article  CAS  PubMed  Google Scholar 

  • Smedman M, Potempska A, Rubenstein R, Ju W, Ramakrishna N, Denman RB (1997) Effects of cadmium, copper, and zinc and beta APP processing and turnover in COS-7 and PC12 cells. Relationship to Alzheimer disease pathology. Mol Chem Neuropathol 31(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2(4):294–302

    Article  CAS  PubMed  Google Scholar 

  • Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, Danni O, Smith MA, Perry G, Tabaton M (2005) Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 92(3):628–636

    Article  CAS  PubMed  Google Scholar 

  • Toiber D, Berson A, Greenberg D, Melamed-Book N, Diamant S, Soreq H (2008) N-acetylcholinesterase-induced apoptosis in Alzheimer’s disease. PLoS One 3(9):e3108

    Article  PubMed  PubMed Central  Google Scholar 

  • Toiber D, Greenberg DS, Soreq H (2009) Pro-apoptotic protein-protein interactions of the extended N-AChE terminus. J Neural Transm 116(11):1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voytko ML (1996) Cognitive functions of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 75(1–2):13–25

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034

    PubMed  PubMed Central  Google Scholar 

  • Wang SH, Shih YL, Kuo TC, Ko WC, Shih CM (2009) Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells. Toxicol Sci 108(1):124–131

    Article  CAS  PubMed  Google Scholar 

  • Ward NL, Hagg T (2000) BDNF is needed for postnatal maturation of basal forebrain and neostriatum cholinergic neurons in vivo. Exp Neurol 162(2):297–310

    Article  CAS  PubMed  Google Scholar 

  • Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S (2002) Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115(1):201–211

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M (2013) Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors? Br J Pharmacol 170(5):953–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Miguel Capo and Margarita Lobo, Professors of Toxicology from Universidad Complutense de Madrid, for their counseling during the preparation of the present work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier del Pino.

Additional information

Javier del Pino and Gabriela Zeballos have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Pino, J., Zeballos, G., Anadón, M.J. et al. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels. Arch Toxicol 90, 1081–1092 (2016). https://doi.org/10.1007/s00204-015-1540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1540-7

Keywords

Navigation