Skip to main content

Advertisement

Log in

Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Brominated flame retardants such as tetrabromobisphenol-A (TBBPA) may exert (developmental) neurotoxic effects. However, data on (neuro)toxicity of halogen-free flame retardants (HFFRs) are scarce. Recent in vitro studies indicated a high neurotoxic potential for some HFFRs, e.g., zinc stannate (ZS), whereas the neurotoxic potential of other HFFRs, such as aluminum diethylphosphinate (Alpi), appears low. However, the in vivo (neuro)toxicity of these compounds is largely unknown. We therefore investigated effects of neonatal exposure to TBBPA, Alpi or ZS on synaptic plasticity in mouse hippocampus. Male C57bl/6 mice received a single oral dose of 211 µmol/kg bw TBBPA, Alpi or ZS on postnatal day (PND) 10. On PND 17–19, effects on hippocampal synaptic plasticity were investigated using ex vivo extracellular field recordings. Additionally, we measured levels of postsynaptic proteins involved in long-term potentiation (LTP) as well as flame retardant concentrations in brain, muscle and liver tissues. All three flame retardants induced minor, but insignificant, effects on LTP. Additionally, TBBPA induced a minor decrease in post-tetanic potentiation. Despite these minor effects, expression of selected synaptic proteins involved in LTP was not affected. The flame retardants could not be measured in significant amounts in the brains, suggesting low bioavailability and/or rapid elimination/metabolism. We therefore conclude that a single neonatal exposure on PND 10 to TBBPA, Alpi or ZS does affect neurodevelopment and synaptic plasticity only to a small extent in mice. Additional data, in particular on persistence, bioaccumulation and (in vivo) toxicity, following prolonged (developmental) exposure are required for further (human) risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACSF:

Artificial cerebrospinal fluid

Alpi:

Aluminum diethylphosphinate

BFR:

Brominated flame retardant

CaMK-II:

Calcium-/calmodulin-dependent protein kinase-II

fEPSPs:

Field excitatory postsynaptic potentials

GAP-43:

Growth-associated protein-43

HFFR:

Halogen-free flame retardant

IO:

Input–output

ISI:

Inter-stimulus interval

LTP:

Long-term potentiation

nACh:

Nicotinic acetylcholine

NMDA:

N-methyl-d-aspartate

PND:

Postnatal day

PPF:

Paired-pulse facilitation

PPR:

Paired-pulse ratio

PSD 95:

Postsynaptic density 95

PTP:

Post-tetanic potentiation

TBBPA:

Tetrabromobisphenol-A

ZS:

Zinc stannate

References

  • Abb M, Stahl B, Lorenz W (2011) Analysis of brominated flame retardants in house dust. Chemosphere 85:1657–1663

    Article  CAS  PubMed  Google Scholar 

  • Abdallah MA, Harrad S (2011) Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: relationship to external exposure. Environ Int 37:443–448

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blundon JA, Zakharenko SS (2008) Dissecting the components of long-term potentiation. Neuroscientist 14:598–608

    Article  PubMed Central  PubMed  Google Scholar 

  • Brady UE (1979) Pharmacokinetic study of tetrabromobisphenol A (BP-4) in rats. Brominated flame retardant industry panel

  • Cariou R, Antignac JP, Zalko D, Berrebi A, Cravedi JP, Maume D, Marchand P, Monteau F, Riu A, Andre F, Le Bizec B (2008) Exposure assessment of French women and their newborns to tetrabromobisphenol-A: occurrence measurements in maternal adipose tissue, serum, breast milk and cord serum. Chemosphere 73:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Colnot T, Kacew S, Dekant W (2014) Mammalian toxicology and human exposures to the flame retardant 2,2′,6,6′-tetrabromo-4,4′-isopropylidenediphenol (TBBPA): implications for risk assessment. Arch Toxicol 88(3):553–573

    CAS  PubMed  Google Scholar 

  • Covaci A, Voorspoels S, Abdallah MA, Geens T, Harrad S, Law RJ (2009) Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J Chromatogr A 1216:346–363

    Article  CAS  PubMed  Google Scholar 

  • D’Hulst C, Atack JR, Kooy RF (2009) The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today 14:866–875

    Article  PubMed  Google Scholar 

  • de Wit CA, Herzke D, Vorkamp K (2010) Brominated flame retardants in the Arctic environment-trends and new candidates. Sci Total Environ 408:2885–2918

    Article  PubMed  Google Scholar 

  • Dingemans MM, Ramakers GM, Gardoni F, van Kleef RG, Bergman A, Di Luca M, Van den Berg M, Westerink RH, Vijverberg HP (2007) Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Perspect 115:865–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dingemans MM, Van den Berg M, Westerink RH (2011) Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system. Environ Health Perspect 119:900–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  PubMed  Google Scholar 

  • Dwyer JB, McQuown SC, Leslie FM (2009) The dynamic effects of nicotine on the developing brain. Pharmacol Ther 122:125–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eriksson P, Jakobsson E, Fredriksson A (2001) Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect 109:903–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eriksson P, Viberg H, Jakobsson E, Örn U, Fredriksson A (2002) A brominated flame retardant, 2,2′,4,4′,5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci 67:98–103

    Article  CAS  PubMed  Google Scholar 

  • European Chemicals Agency (ECHA) Database (2014) Exolit OP 930—Toxicological information: experimental supporting basic toxicokinetics 2

  • Gee JR, Moser VC (2008) Acute postnatal exposure to brominated diphenylether 47 delays neuromotor ontogeny and alters motor activity in mice. Neurotoxicol Teratol 30:79–87

    Article  CAS  PubMed  Google Scholar 

  • Geyer HJ, Schramm KW, Darnerud PO, Aune M, Feicht EA, Fried KW (2004) Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans. Organohalogen Compd 66:3867–3872

    Google Scholar 

  • Giessmann U, Greb U (1994) High resolution ICP-MS- a new concept for elemental mass spectrometry. Fresenius J Anal Chem 350:186–193

    Article  CAS  Google Scholar 

  • Hendriks HS, van Kleef RG, Van den Berg M, Westerink RH (2012a) Multiple novel modes of action involved in the in vitro neurotoxic effects of tetrabromobisphenol-A. Toxicol Sci 128:235–246

    Article  CAS  PubMed  Google Scholar 

  • Hendriks HS, van Kleef RG, Westerink RH (2012b) Modulation of human α4β2 nicotinic acetylcholine receptors by brominated and halogen-free flame retardants as a measure for in vitro neurotoxicity. Toxicol Lett 213:266–274

    Article  CAS  PubMed  Google Scholar 

  • Hendriks HS, Meijer M, Muilwijk M, Van den Berg M, Westerink RH (2014) A comparison of the in vitro cyto- and neurotoxicity of brominated and halogen-free flame retardants: prioritization in search for safe(r) alternatives. Arch Toxicol 88:857–869

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Restrepo B, Adams DH, Kannan K (2008) Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 70:1935–1944

    Article  CAS  PubMed  Google Scholar 

  • Kicinski M, Viaene MK, Den Hond E, Schoeters G, Covaci A, Dirtu AC, Nelen V, Bruckers L, Croes K, Sioen I, Baeyens W, Van Larebeke N, Nawrot TS (2012) Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study. Environ Health 11:86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knudsen GA, Sanders JM, Sadik AM, Birnbaum LS (2014) Disposition and kinetics of tetrabromobisphenol A in female Wistar Han rats. Toxicol Rep 1:214–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krystek P, Ritsema R (2009) An incident study about acute and chronic human exposure to uranium by high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Int J Hyg Environ Health 212:76–81

    Article  CAS  PubMed  Google Scholar 

  • Lilienthal H, Verwer CM, Van der Ven LT, Piersma AH, Vos JG (2008) Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats: neurobehavioral effects in offspring from a one-generation reproduction study. Toxicology 246:45–54

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakajima A, Saigusa D, Tetsu N, Yamakuni T, Tomioka Y, Hishinuma T (2009) Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicol Lett 189:78–83

    Article  CAS  PubMed  Google Scholar 

  • Notenboom RG, Ramakers GM, Kamal A, Spruijt BM, de Graan PN (2010) Long-lasting modulation of synaptic plasticity in rat hippocampus after early-life complex febrile seizures. Eur J Neurosci 32:749–758

    Article  PubMed  Google Scholar 

  • Saegusa Y, Fujimoto H, Woo G, Inoue K, Takahashi M, Mitsumori K, Hirose M, Nishikawa A, Shibutani M (2009) Developmental toxicity of brominated flame retardants, tetrabromobisphenol A and 1,2,5,6,9,10-hexabromocyclododecane, in rat offspring after maternal exposure from mid-gestation through lactation. Reprod Toxicol 28:456–467

    Article  CAS  PubMed  Google Scholar 

  • Saegusa Y, Fujimoto H, Woo GH, Ohishi T, Wang L, Mitsumori K, Nishikawa A, Shibutani M (2012) Transient aberration of neuronal development in the hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats. Arch Toxicol 86:1431–1442

    Article  CAS  PubMed  Google Scholar 

  • Schulz P, Cook E, Johnston D (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci 14:5325–5337

    CAS  PubMed  Google Scholar 

  • Shi ZX, Wu YN, Li JG, Zhao YF, Feng JF (2009) Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: occurrence measurements in foods and human milk. Environ Sci Technol 43:4314–4319

    Article  CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2008) Flame retardants in printed circuit boards 273

  • Van der Ven LT, Van de Kuil T, Verhoef A, Verwer CM, Lilienthal H, Leonards PE, Schauer UM, Canton RF, Litens S, De Jong FH, Visser TJ, Dekant W, Stern N, Hakansson H, Slob W, Van den Berg M, Vos JG, Piersma AH (2008) Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar Rats as Tested in a one-generation reproduction study and a subacute toxicity study. Toxicology 245:76–89

    Article  PubMed  Google Scholar 

  • Viberg H, Eriksson P (2011) Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Toxicology 289:59–65

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2003a) Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol 192:95–106

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Jakobsson E, Orn U, Eriksson P (2003b) Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci 76:112–120

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2004) Neonatal exposure to the brominated flame-retardant, 2,2′,4,4′,5-pentabromodiphenyl ether, decreases cholinergic nicotinic receptors in hippocampus and affects spontaneous behaviour in the adult mouse. Environ Toxicol Pharmacol 17:61–65

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Mundy W, Eriksson P (2008a) Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29:152–159

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Ponten E, Eriksson P, Gordh T, Fredriksson A (2008b) Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly. Toxicology 249:153–159

    Article  CAS  PubMed  Google Scholar 

  • Waaijers SL, Kong D, Hendriks HS, de Wit CA, Cousins IT, Westerink RHS, Leonards PEG, Kraak MHS, Admiraal W, de Voogt P, Parsons JR (2013a) Persistence, bioaccumulation, and toxicity of halogen-free flame retardants. Rev Environ Contam Toxicol 222:1–71

    CAS  PubMed  Google Scholar 

  • Waaijers SL, Hartmann J, Soeter AM, Helmus R, Kools SA, de Voogt P, Admiraal W, Parsons JR, Kraak MH (2013b) Toxicity of new generation flame retardants to Daphnia magna. Sci Total Environ 463–464:1042–1048

    Article  PubMed  Google Scholar 

  • William Blythe (2010) Material safety data sheet (MSDS)—Flamtard S (zinc stannate)

  • Williams AL, DeSesso JM (2010) The potential of selected brominated flame retardants to affect neurological development. J Toxicol Environ Health B Crit Rev 13:411–448

    Article  CAS  PubMed  Google Scholar 

  • Xing T, Chen L, Tao Y, Wang M, Chen J, Ruan D (2009) Effects of decabrominated diphenyl ether (PBDE 209) exposure at different developmental periods on synaptic plasticity in the dentate gyrus of adult rats in vivo. Toxicol Sci 110:401–410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Petra Krystek (Philips Innovation Services, Eindhoven, The Netherlands) for the metal analysis, the Department of Organismal Biology at Uppsala University Sweden for protein expression analysis. This work was supported by a grant from the European Union (ENFIRO; grant agreement FP7-ENV-2008-1-226563) and the Faculty of Veterinary Medicine of Utrecht University.

Conflict of interest

The authors declare they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco H. S. Westerink.

Additional information

Hester S. Hendriks and Lucas A. E. Koolen have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendriks, H.S., Koolen, L.A.E., Dingemans, M.M.L. et al. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice. Arch Toxicol 89, 2345–2354 (2015). https://doi.org/10.1007/s00204-014-1366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1366-8

Keywords

Navigation