Skip to main content
Log in

Elevated copper ion levels as potential cause of impaired kinesin-dependent transport processes

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Copper is a trace element required to maintain essential life processes. In healthy organisms, copper metabolism is well balanced. If this balance is destroyed, the cellular level of free copper might increase and cause toxic effects. So far, the molecular mechanisms of copper intoxication are understood only partly. The present study revealed that the kinesin-dependent transport system is strongly affected by copper(II) ions. Both the microtubules, along which kinesin moves, and the kinesin itself were found to be the target structures of copper ions: Microtubule formation was suppressed by copper ions (IC50 26–70 µM) apparently chiefly by inhibition of binding of microtubule-associated proteins to tubulin. This inhibition could be widely compensated by the microtubule-stabilising agent paclitaxel. In addition, copper ions strongly inhibited the ATPase activity of neuron-specific kinesin KIF5A. At final KIF5A concentration of 112 nM, an IC50 of 1.3 µM was determined. Correspondingly, the motility activity of KIF5A, measured as velocity of microtubules gliding across a kinesin-covered surface, was blocked. The effects of copper ions on microtubules and on KIF5A are suggested to contribute to impaired transport processes within brain and other organs in cases of copper ion surplus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amsler PE, Sigel H (1976) Comparison of the metal-ion-promoted dephosphorylation of the 5′-triphosphates of adenosine, inosine, guanosine and cytidine by Mn2+, Ni2+ and Zn2+ in binary and ternary complexes. Eur J Biochem 63(2):569–581

    Article  CAS  PubMed  Google Scholar 

  • Böhm KJ (2014) Kinesin-dependent motility generation as target mechanism of cadmium intoxication. Toxicol Lett 224:356–361. doi:10.1016/j.toxlet.2013.11.004

    Article  PubMed  Google Scholar 

  • Böhm KJ, Stracke R, Baum M, Zieren M, Unger E (2000) Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity. FEBS Lett 466(1):59–62

    Article  PubMed  Google Scholar 

  • Bonacker D, Stoiber T, Wang MS, Böhm KJ, Prots I, Unger E, Thier R, Bolt HM, Degen GH (2004) Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Arch Toxicol 78(10):575–583. doi:10.1007/s00204-004-0578-8

    Article  CAS  PubMed  Google Scholar 

  • Bonacker D, Stoiber T, Böhm KJ, Prots I, Wang MS, Unger E, Thier R, Bolt HM, Degen GH (2005) Genotoxicity of inorganic lead salts and disturbance of microtubule function. Environ Mol Mutagen 45(4):346–353. doi:10.1002/Em.20100

    Article  CAS  PubMed  Google Scholar 

  • Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4(2):184–191

    Article  CAS  PubMed  Google Scholar 

  • Cohn SA, Ingold AL, Scholey JM (1989) Quantitative analysis of sea urchin egg kinesin-driven microtubule motility. J Biol Chem 264(8):4290–4297

    CAS  PubMed  Google Scholar 

  • de Bie P, Muller P, Wijmenga C, Klomp LW (2007) Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 44(11):673–688

    Article  PubMed Central  PubMed  Google Scholar 

  • Deinum J, Wallin M, Lagercrantz C (1981) Spatial separation of the two essential thiol groups and the binding site of the exchangeable GTP in brain tubulin. A spin label study. Biochim Biophys Acta 671(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88(3):855S–858S

    CAS  PubMed  Google Scholar 

  • Furukawa T, Komatsu M, Ikeda R, Tsujikawa K, Akiyama S (2008) Copper transport systems are involved in multidrug resistance and drug transport. Curr Med Chem 15(30):3268–3278

    Article  CAS  PubMed  Google Scholar 

  • Gaskin F, Cantor CR, Shelanski ML (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89(4):737–755

    Article  CAS  PubMed  Google Scholar 

  • Hackney DD (1994) The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. J Biol Chem 269(23):16508–16511

    CAS  PubMed  Google Scholar 

  • Hartter DE, Barnea A (1988) Brain tissue accumulates 67copper by two ligand-dependent saturable processes. A high affinity, low capacity and a low affinity, high capacity process. J Biol Chem 263(2):799–805

    CAS  PubMed  Google Scholar 

  • Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68(4):610–638. doi:10.1016/j.neuron.2010.09.039

    Article  CAS  PubMed  Google Scholar 

  • Holloway JH, Reilley CN (1960) Metal chelate stability constants of aminopolycarboxylate ligands. Anal Chem 32(2):249–256. doi:10.1021/Ac60158a033

    Article  CAS  Google Scholar 

  • Jellinger KA (2013) The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int Rev Neurobiol 110:1–47. doi:10.1016/B978-0-12-410502-7.00002-8

    Article  CAS  PubMed  Google Scholar 

  • Kalchishkova N, Böhm KJ (2008) The role of kinesin neck linker and neck in velocity regulation. J Mol Biol 382(1):127–135. doi:10.1016/j.jmb.2008.06.092

    Article  CAS  PubMed  Google Scholar 

  • Kardos J, Kovacs I, Hajos F, Kalman M, Simonyi M (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett 103(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Karle KN, Mockel D, Reid E, Schols L (2012) Axonal transport deficit in a KIF5A(−/−) mouse model. Neurogenetics 13(2):169–179. doi:10.1007/s10048-012-0324-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kendrick MJ, May MT, Plishka MJ, Robinson KD (1992) Magnesium in biological systems. In: Kendrick MJ et al (eds) Metals in biological systems, Ellis Horwood series in inorganic chemistry, Ellis Horwood Ltd., New York, pp 57–65

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Martic S, Rains MK, Kraatz HB (2013) Probing copper/tau protein interactions electrochemically. Anal Biochem 442(2):130–137. doi:10.1016/j.ab.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  • Monteiro SM, Mancera JM, Fontainhas-Fernandes A, Sousa M (2005) Copper induced alterations of biochemical parameters in the gill and plasma of Oreochromis niloticus. CBP 141(4):375–383. doi:10.1016/j.cbpc.2005.08.002

    Google Scholar 

  • Morel M, Heraud C, Nicaise C, Suain V, Brion JP (2012) Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer’s disease: implications for axoplasmic transport. Acta Neuropathol 123(1):71–84. doi:10.1007/s00401-011-0901-4

    Article  CAS  PubMed  Google Scholar 

  • Niclas J, Navone F, Hom-Booher N, Vale RD (1994) Cloning and localization of a conventional kinesin motor expressed exclusively in neurons. Neuron 12(5):1059–1072

    Article  CAS  PubMed  Google Scholar 

  • Niwa S, Takahashi H, Hirokawa N (2013) beta-Tubulin mutations that cause severe neuropathies disrupt axonal transport. EMBO J 32(10):1352–1364. doi:10.1038/emboj.2013.59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pushkar Y, Robison G, Sullivan B, Fu SX, Kohne M, Jiang W, Rohr S, Lai B, Marcus MA, Zakharova T, Zheng W (2013) Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone. Aging Cell 12(5):823–832. doi:10.1111/acel.12112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M (2013) Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol Trace Elem Res 151(2):159–170. doi:10.1007/s12011-012-9547-x

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara A, Ando R, Sapir T, Tanaka T (2013) Microtubule dynamics in neuronal morphogenesis. Open biol 3(7):130061. doi:10.1098/rsob.130061

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarell CJ, Wilkinson SR, Viles JH (2010) Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-{beta} from Alzheimer disease. J Biol Chem 285(53):41533–41540. doi:10.1074/jbc.M110.171355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaap IA, Carrasco C, de Pablo PJ, Schmidt CF (2011) Kinesin walks the line: single motors observed by atomic force microscopy. Biophys J 100(10):2450–2456. doi:10.1016/j.bpj.2011.04.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry-Us 20(11):3247–3252

    Article  CAS  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667

    Article  CAS  PubMed  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci 70(3):765–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, Deane RJ, Zhong E, Parisi M, Ciszewski J, Kasper RT, Deane R (2013) Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance. Proc Natl Acad Sci USA 110(36):14771–14776. doi:10.1073/pnas.1302212110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sloboda RD, Dentler WL, Rosenbaum JL (1976) Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry-Us 15(20):4497–4505

    Article  CAS  Google Scholar 

  • Telianidis J, Hung YH, Materia S, Fontaine SL (2013) Role of the P-type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 5:44. doi:10.3389/fnagi.2013.00044

    Article  PubMed Central  PubMed  Google Scholar 

  • Thier R, Bonacker D, Stoiber T, Böhm KJ, Wang M, Unger E, Bolt HM, Degen G (2003) Interaction of metal salts with cytoskeletal motor protein systems. Toxicol Lett 140–141:75–81

    Article  PubMed  Google Scholar 

  • Tucker C, Goldstein LSB (1997) Probing the kinesin–microtubule interaction. J Biol Chem 272(14):9481–9488

    Article  CAS  PubMed  Google Scholar 

  • Wallin M, Larsson H, Edstrom A (1977) Tubulin sulfhydryl groups and polymerization in vitro. Effects of di- and trivalent cations. Exp Cell Res 107(1):219–225

    Article  CAS  PubMed  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci 72(5):1858–1862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wimalasena DS, Wiese TJ, Wimalasena K (2007) Copper ions disrupt dopamine metabolism via inhibition of V–H+-ATPase: a possible contributing factor to neurotoxicity. J Neurochem 101(2):313–326. doi:10.1111/j.1471-4159.2006.04362.x

    Article  CAS  PubMed  Google Scholar 

  • Woehlke G, Ruby AK, Hart CL, Ly B, HomBooher N, Vale RD (1997) Microtubule interaction site of the kinesin motor. Cell 90(2):207–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Mrs Marina Wollmann for her skilful excellent assistance in technical performing the experiments described in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad J. Böhm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, K.J. Elevated copper ion levels as potential cause of impaired kinesin-dependent transport processes. Arch Toxicol 89, 565–572 (2015). https://doi.org/10.1007/s00204-014-1272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1272-0

Keywords

Navigation