Skip to main content

Advertisement

Log in

The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS’s effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TCS:

Triclosan

mESC:

Mouse embryonic stem cells

hpf:

Hour post-fertilization

MTT:

3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide

AP:

Alkaline phosphatase

References

  • Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46(9–10):1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Takada T (2012) Bisphenol A modulates germ cell differentiation and retinoic acid signaling in mouse ES cells. Reprod Toxicol 34(3):463–470

    Article  CAS  PubMed  Google Scholar 

  • Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T, Leist M (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21(18):4104–4114

    Article  CAS  PubMed  Google Scholar 

  • Berry JP, Gantar M, Gibbs PD, Schmale MC (2007) The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae. Comp Biochem Physiol C Toxicol Pharmacol 145(1):61–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Urinary concentrations of triclosan in the US population: 2003–2004. Environ Health Perspect 116(3):303–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23(43):7150–7160

    Article  CAS  PubMed  Google Scholar 

  • Chan WK, Chan KM (2012) Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquat Toxicol 108:106–111

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekar G, Arner A, Kitambi SS, Dahlman-Wright K, Lendahl MA (2011) Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish. Neurotoxicol Teratol 33(6):752–764

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Chen J, Cheng S, Qin J, Li W, Zhang L, Jiao H, Yu X, Zhang X, Lahn BT, Xiang AP (2010) Assessment of embryotoxicity of compounds in cosmetics by the embryonic stem cell test. Toxicol Mech Methods 20(3):112–118

    Article  CAS  PubMed  Google Scholar 

  • Crofton KM, Paul KB, Devito MJ, Hedge JM (2007) Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ Toxicol Pharmacol 24(2):194–197

    Article  CAS  PubMed  Google Scholar 

  • de Esch C, Slieker R, Wolterbeek A, Woutersen R, de Groot D (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol 34(6):545–553

    Article  PubMed  Google Scholar 

  • Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ Sci Technol 39(6):1420–1426

    Article  CAS  PubMed  Google Scholar 

  • Hermsen SA, van den Brandhof EJ, van der Ven LT, Piersma AH (2011) Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. Toxicol In Vitro 25(3):745–753

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Arizono K (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67(2):167–179. doi:10.1016/j.aquatox.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  • Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442(7102):533–538

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung EM, Choi KC, Yu FH, Jeung EB (2010) Effects of 17beta-estradiol and xenoestrogens on mouse embryonic stem cells. Toxicol In Vitro 24(6):1538–1545

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapinas K, Grandy R, Ghule P, Medina R, Becker K, Pardee A, Zaidi SK, Lian J, Stein J, van Wijnen A, Stein G (2013) The abbreviated pluripotent cell cycle. J Cell Physiol 228(1):9–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SK, Kim BK, Shim JH, Gil JE, Yoon YD, Kim JH (2006) Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas–Fas ligand pathway. Toxicol Sci 94(2):310–321

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  PubMed  Google Scholar 

  • Kleinstreuer NC, Smith AM, West PR, Conard KR, Fontaine BR, Weir-Hauptman AM, Palmer JA, Knudsen TB, Dix DJ, Donley EL, Cezar GG (2011) Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 257(1):111–121

    Article  CAS  PubMed  Google Scholar 

  • Lachnit M, Kur E, Driever W (2008) Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Dev Biol 315(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  PubMed  Google Scholar 

  • Moens CB, Prince VE (2002) Constructing the hindbrain: insights from the zebrafish. Dev Dyn 224(1):1–17

    Article  PubMed  Google Scholar 

  • Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102(34):12135–12140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376

    Article  CAS  PubMed  Google Scholar 

  • Oliveira R, Domingues I, Koppe Grisolia C, Soares AM (2009) Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res Int 16(6):679–688

    Article  CAS  PubMed  Google Scholar 

  • Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21(7):1338–1349

    Article  CAS  PubMed  Google Scholar 

  • Peterson RT, Nass R, Boyd WA, Freedman JH, Dong K, Narahashi T (2008) Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology 29(3):546–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Queckenberg C, Meins J, Wachall B, Doroshyenko O, Tomalik-Scharte D, Bastian B, Abdel-Tawab M, Fuhr U (2010) Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrob Agents Chemother 54(1):570–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robles V, Marti M, Izpisua Belmonte JC (2011) Study of pluripotency markers in zebrafish embryos and transient embryonic stem cell cultures. Zebrafish 8(2):57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez PE, Sanchez MS (2010) Maternal exposure to triclosan impairs thyroid homeostasis and female pubertal development in Wistar rat offspring. J Toxicol Environ Health A 73(24):1678–1688

    Article  CAS  PubMed  Google Scholar 

  • Russell LB, Montgomery CS (1980) Use of the mouse spot test to investigate the mutagenic potential of triclosan (Irgasan DP300). Mutat Res 79(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Savatier P, Huang S, Szekely L, Wiman KG, Samarut J (1994) Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9(3):809–818

    CAS  PubMed  Google Scholar 

  • Schuff M, Siegel D, Philipp M, Bundschu K, Heymann N, Donow C, Knochel W (2012) Characterization of Danio rerio Nanog and functional comparison to Xenopus Vents. Stem Cells Dev 21(8):1225–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Hu F, Long Y, Xia Y, Lu C, Song L, Wang S, Wang X (2011) Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85(6):1010–1016

    Article  CAS  PubMed  Google Scholar 

  • Stoker TE, Gibson EK, Zorrilla LM (2010) Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicol Sci 117(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Stummann TC, Hareng L, Bremer S (2008) Embryotoxicity hazard assessment of cadmium and arsenic compounds using embryonic stem cells. Toxicology 252(1–3):118–122

    Article  CAS  PubMed  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008a) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, Lufkin T, Rigoutsos I, Thomson AM, Lim B (2008b) MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 26(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Usenko CY, Hopkins DC, Trumble SJ, Bruce ED (2012) Hydroxylated PBDEs induce developmental arrest in zebrafish. Toxicol Appl Pharmacol 262(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Vallier L, Pedersen RA (2005) Human embryonic stem cells: an in vitro model to study mechanisms controlling pluripotency in early mammalian development. Stem Cell Rev 1(2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Van Aggelen G, Helbing CC (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80(3):217–227

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444(7117):364–368

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson SW, Brand M, Eisen JS (2002) Patterning the zebrafish central nervous system. Results Probl Cell Differ 40:181–215

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Fan ZP, Muller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI (2012) Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 22(3):625–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National 973 Program(2012CBA01306); National Science Fund for Outstanding Young Scholars(81322039); National Natural Science Foundation(31371524); Distinguished Young Scholars of Jiangsu Province(BK20130041); New Century Excellent Talents of MOE (NCET-13-0870); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare no conflict of interest with the study or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yankai Xia.

Additional information

Xiaojiao Chen, Bo Xu and Xiumei Han have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xu, B., Han, X. et al. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish. Arch Toxicol 89, 635–646 (2015). https://doi.org/10.1007/s00204-014-1270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1270-2

Keywords

Navigation