Skip to main content

Advertisement

Log in

Chronic ethanol consumption decreases serum sulfatide levels by suppressing hepatic cerebroside sulfotransferase expression in mice

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Epidemiological studies demonstrate a possible relationship between chronic ethanol drinking and thrombotic diseases, such as myocardial infarction and stroke. However, the precise mechanism for this association remains unclear. Sulfatides are endogenous glycosphingolipids composed of ceramide, galactose, and sulfate, known to have anti-thrombotic properties. Low (0.5 g/kg/day), middle (1.5 g/kg/day), and high (3.0 g/kg/day) doses of ethanol were administered for 21 days intraperitoneally to female wild-type mice, and serum/liver sulfatide levels were measured. No significant changes in cholesterol and triglycerides were seen in serum and liver by ethanol treatment. However, serum/liver sulfatide levels were significantly decreased by middle- and high-dose ethanol treatment, likely due to downregulation of hepatic cerebroside sulfotransferase (CST) levels. Marked decreases in the expression of catalase and superoxide dismutases and ensuing increases in lipid peroxides were also observed in the livers of mice with middle- and high-dose ethanol treatment, suggesting the association between the suppression of hepatic CST expression and enhancement of oxidative stress. Furthermore, serum levels of tissue factor, a typical pro-coagulant molecule, were significantly increased in the mice with middle- and high-dose ethanol treatment showing decreases in serum sulfatide levels. Collectively, these results demonstrate that chronic ethanol consumption reduces serum sulfatide levels by increasing oxidative stress and decreasing the expression of CST in the liver. These findings could provide a mechanism by which chronic ethanol drinking increases thrombotic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ALD:

Alcoholic liver disease

ALT:

Alanine aminotransferase

ApoB:

Apolipoprotein B

ARSA:

Arylsulfatase A

AST:

Aspartate aminotransferase

CAT:

Catalase

CST:

Cerebroside sulfotransferase

CVD:

Cardiovascular disease

CYBB:

NADPH oxidase 2

GALC:

Galactosylceramidase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GPX:

Glutathione peroxidase

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

FABP:

Fatty acid-binding protein

HNE:

Hydroxynonenal

LS:

Lysosulfatides

MALDI-TOF MS:

Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry

MDA:

Malondialdehyde

MTTP:

Microsomal triglyceride transfer protein

NCF:

Neutrophil cytosolic factor

PCR:

Polymerase chain reaction

PPAR:

Peroxisome proliferator-activated receptor

ROS:

Reactive oxygen species

SCP2:

Sterol carrier protein 2

SD:

Standard deviation

SOD:

Superoxide dismutase

TF:

Tissue factor

TG:

Triglyceride

UGT:

UDP-glucuronosyltransferase

References

  • Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV (1989) Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 264:10388–10395

    CAS  PubMed  Google Scholar 

  • Aoyama T, Ueno I, Kamijo T, Hashimoto T (1994) Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene-product, is a rate-limiting enzyme in long-chain fatty-acid beta-oxidation system—cDNA and deduced amino amino-acid-sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem 269:19088–19094

    CAS  PubMed  Google Scholar 

  • Aoyama T, Souri M, Ushikubo S, Kamijo T, Yamaguchi S, Kelley RI, Rhead WJ, Uetake K, Tanaka K, Hashimoto T (1995) Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J Clin Invest 95:2465–2473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J Biol Chem 273:5678–5684

    Article  CAS  PubMed  Google Scholar 

  • Bertola A, Mathews S, Ki SH, Wang H, Gao B (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8:627–637

    Article  CAS  PubMed  Google Scholar 

  • Brinton EA (2012) Effects of ethanol intake on lipoproteins. Curr Atheroscler Rep 14:108–114

    Article  CAS  PubMed  Google Scholar 

  • Carmiel-Haggai M, Cederbaum AI, Nieto N (2003) Binge ethanol exposure increases liver injury in obese rats. Gastroenterology 125:1818–1833

    Article  CAS  PubMed  Google Scholar 

  • Carr TP, Andresen CJ, Rudel LL (1993) Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin Biochem 26:39–42

    Article  CAS  PubMed  Google Scholar 

  • Carson EJ, Pruett SB (1996) Development and characterization of a binge drinking model in mice for evaluation of immunological effects of ethanol. Alcohol Clin Exp Res 20:132–138

    Article  CAS  PubMed  Google Scholar 

  • Cederholm A, Frostegård J (2007) Annexin A5 as a novel player in prevention of atherothrombosis in SLE and in the general population. Ann N Y Acad Sci 1108:96–103

    Article  CAS  PubMed  Google Scholar 

  • Djoussé L, Gaziano JM (2008) Alcohol consumption and heart failure: a systematic review. Curr Atheroscler Rep 10:117–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Dohi Y, Ikura T, Hoshikawa Y, Katoh Y, Ota K, Nakanome A, Muto A, Omura S, Ohta T, Ito A, Yoshida M, Noda T, Igarashi K (2008) Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin. Nat Struct Mol Biol 15:1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Furuta S, Hayashi H, Hijikata M, Miyazawa S, Osumi T, Hashimoto T (1986) Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver catalase. Proc Natl Acad Sci USA 83:313–317

    Article  CAS  PubMed  Google Scholar 

  • Gaziano JM, Gaziano TA, Glynn RJ, Sesso HD, Ajani UA, Stampfer MJ, Manson JE, Hennekens CH, Buring JE (2000) Light-to-moderate alcohol consumption and mortality in the Physicians’ Health Study enrollment cohort. J Am Coll Cardiol 35:96–105

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Ren J (2010) Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway. PLoS One 5:e8757

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo R, Scott GI, Ren J (2010) Involvement of AMPK in alcohol dehydrogenase accentuated myocardial dysfunction following acute ethanol challenge in mice. PLoS One 5:e11268

    Article  PubMed Central  PubMed  Google Scholar 

  • Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426

    Article  CAS  PubMed  Google Scholar 

  • Hara A, Taketomi T (1987) Occurrence of sulfatide as a major glycosphingolipid in WHHL rabbit serum lipoproteins. J Biochem 102:83–92

    CAS  PubMed  Google Scholar 

  • Hara A, Taketomi T (1991) Characterization and changes of glycosphingolipids in the aorta of the Watanabe hereditable hyperlipidemic rabbit. J Biochem 109:904–908

    CAS  PubMed  Google Scholar 

  • Hara A, Kutsukake Y, Uemura K, Taketomi T (1993) Anticoagulant activity of sulfatide and its anti-thrombotic effect in rabbit. J Biochem 113:781–785

    CAS  PubMed  Google Scholar 

  • Hara A, Uemura K, Taketomi T (1996) Sulfatide prolongs blood-coagulation time and bleeding time by forming a complex with fibrinogen. Glycoconj J 13:187–194

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Li G, Kamijo Y, Aoyama T, Nakajima T, Inoue T, Node K, Kannagi R, Kyogashima M, Hara A (2007) Serum sulfatides as a novel biomarker for cardiovascular disease in patients with end-stage renal failure. Glycoconj J 24:565–571

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka I (1997) Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36:245–319

    Article  CAS  PubMed  Google Scholar 

  • Kloner RA, Rezkalla SH (2007) To drink or not to drink? That is the question. Circulation 116:1306–1317

    Article  PubMed  Google Scholar 

  • Kyogashima M (2004) The role of sulfatide in thrombogenesis and haemostasis. Arch Biochem Biophys 426:157–162

    Article  CAS  PubMed  Google Scholar 

  • Lakshman R, Garige M, Gong M, Leckey L, Varatharajalu R, Zakhari S (2010) Is alcohol beneficial or harmful for cardioprotection? Genes Nutr 5:111–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Hu R, Kamijo Y, Nakajima T, Aoyama T, Inoue T, Node K, Kannagi R, Kyogashima M, Hara A (2007) Establishment of a quantitative, qualitative and high throughput analysis of sulfatides from small amounts of sera by MALDI-TOF MS. Anal Biochem 362:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Kikuchi S, Tamakoshi A, Wakai K, Kawamura T, Iso H, Ogimoto I, Yagyu K, Obata Y, Ishibashi T (2005) Alcohol consumption and mortality among middle-aged and elderly Japanese men and women. Ann Epidemiol 15:590–597

    Article  PubMed  Google Scholar 

  • Ma H, Li J, Gao F, Ren J (2009) Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol. J Am Coll Cardiol 54:2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Malcolm RD, Alkana RL (1981) Temperature dependence of ethanol depression in mice. J Pharmacol Exp Ther 217:770–775

    CAS  PubMed  Google Scholar 

  • Matsubara T, Tanaka N, Patterson AD, Cho JY, Krausz KW, Gonzalez FJ (2011) Lithocholic acid disrupts phospholipid and sphingolipid homeostasis leading to cholestasis in mice. Hepatology 53:1282–1293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsubara T, Tanaka N, Krausz KW, Manna SK, Kang DW, Anderson ER, Luecke H, Patterson AD, Shah YM, Gonzalez FJ (2012) Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis. Cell Metab 16:634–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Kamijo Y, Tanaka N, Sugiyama E, Tanaka E, Kiyosawa K, Fukushima Y, Peters JM, Gonzalez FJ, Aoyama T (2004) Peroxisome proliferator-activated receptor α protects against alcohol-induced liver damage. Hepatology 40:972–980

    CAS  PubMed  Google Scholar 

  • Okamoto A, Iwamoto Y, Maru Y (2006) Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Mol Cell Biol 26:1087–1097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okiyama W, Tanaka N, Nakajima T, Tanaka E, Kiyosawa K, Gonzalez FJ, Aoyama T (2009) Polyenephosphatidylcholine prevents alcoholic liver disease in PPARα-null mice through attenuation of increases in oxidative stress. J Hepatol 50:1236–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paunio M, Virtamo J, Gref CG, Heinonen OP (1996) Serum high density lipoprotein cholesterol, alcohol, and coronary mortality in male smokers. BMJ 312:1200–1203

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Hennuyer N, Staels B, Fruchart JC, Fievet C, Gonzalez FJ, Auwerx J (1997) Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 272:27307–27312

    Article  CAS  PubMed  Google Scholar 

  • Ravassa S, Bennaghmouch A, Kenis H, Lindhout T, Hackeng T, Narula J, Hofstra L, Reutelingsperger C (2005) Annexin A5 down-regulates surface expression of tissue factor: a novel mechanism of regulating the membrane receptor repertoire. J Biol Chem 280:6028–6035

    Article  CAS  PubMed  Google Scholar 

  • Sesso HD (2001) Alcohol and cardiovascular health: recent findings. Am J Cardiovasc Drugs 1:167–172

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Nakajima T, Wang L, Zhang X, Kamijo Y, Takahashi K, Tanaka N, Sugiyama E, Kyogashima M, Aoyama T, Hara A (2012) Attenuation of kidney injuries maintains serum sulfatide levels dependent on hepatic synthetic ability: a possible involvement of oxidative stress. Tohoku J Exp Med 227:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T (2008a) PPARα activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 118:683–694

    PubMed Central  PubMed  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Aoyama T (2008b) Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor α in transgenic mice: implications for HCV-associated hepatocarcinogenesis. Int J Cancer 122:124–131

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Sano K, Horiuchi A, Tanaka E, Kiyosawa K, Aoyama T (2008c) Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis. J Clin Gastroenterol 42:413–418

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Zhang X, Sugiyama E, Kono H, Horiuchi A, Nakajima T, Kanbe H, Tanaka E, Gonzalez FJ, Aoyama T (2010) Eicosapentaenoic acid improves hepatic steatosis independent of PPARα activation through inhibition of SREBP-1 maturation in mice. Biochem Pharmacol 80:1601–1612

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ (2012) Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 56:118–129

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya M, Ji C, Kosyk O, Shymonyak S, Melnyk S, Kono H, Tryndyak V, Muskhelishvili L, Pogribny IP, Kaplowitz N, Rusyn I (2012) Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice. Hepatology 56:130–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vasiliou V, Ziegler TL, Bludeau P, Petersen DR, Gonzalez FJ, Deitrich RA (2006) CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenet Genomics 16:51–58

    Article  CAS  PubMed  Google Scholar 

  • Vatsyayan R, Kothari H, Pendurthi UR, Rao LV (2013) 4-Hydroxy-2-nonenal enhances tissue factor activity in human monocytic cells via p38 mitogen-activated protein kinase activation-dependent phosphatidylserine exposure. Arterioscler Thromb Vasc Biol 33:1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Walker JE, Odden AR, Jeyaseelan S, Zhang P, Bagby GJ, Nelson S, Happel KI (2009) Ethanol exposure impairs LPS-induced pulmonary LIX expression: alveolar epithelial cell dysfunction as a consequence of acute intoxication. Alcohol Clin Exp Res 33:357–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Kamijo Y, Matsumoto A, Nakajima T, Higuchi M, Kannagi R, Kyogashima M, Aoyama T, Hara A (2011) Kidney transplantation recovers the reduction level of serum sulfatide in ESRD patient via processes correlated to oxidative stress and platelet count. Glycoconj J 28:125–135

    Article  CAS  PubMed  Google Scholar 

  • Xiaowei Z, Nakajima T, Kamijo Y, Li G, Hu R, Kannagi R, Kyogashima M, Aoyama T, Hara A (2009) Acute kidney injury induced by protein-overload nephropathy down-regulates gene expression of hepatic cerebroside sulfotransferase in mice, resulting in reduction of liver and serum sulfatides. Biochem Biophys Res Commun 390:1382–1388

    Article  Google Scholar 

  • Zhou Z, Wang L, Song Z, Lambert JC, McClain CJ, Kang YJ (2003) A critical involvement of oxidative stress in acute alcohol-induced hepatic TNFα production. Am J Pathol 163:1137–1146

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Tanaka.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanbe, H., Kamijo, Y., Nakajima, T. et al. Chronic ethanol consumption decreases serum sulfatide levels by suppressing hepatic cerebroside sulfotransferase expression in mice. Arch Toxicol 88, 367–379 (2014). https://doi.org/10.1007/s00204-013-1132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1132-3

Keywords

Navigation