Skip to main content

Advertisement

Log in

PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cadmium exposure causes endoplasmic reticulum (ER) stress and accumulation of activating transcription factor 4 (ATF4), an ER stress marker. To elucidate the role of phosphatidylinositol-3-kinase (PI3K) signaling in this process, we examined the effects of PI3K signaling on cadmium chloride (CdCl2) exposure-induced ATF4 expression in HK-2 human renal proximal tubular cells. ATF4 knockdown by siRNA enhanced CdCl2-induced cellular damage, indicating a cytoprotective function of ATF4. Treatment with LY294002, a PI3K inhibitor, suppressed CdCl2-induced ATF4 expression and Akt phosphorylation at Thr308 with little effect on phosphorylation of eukaryotic translation initiation factor 2 subunit α at Ser51. Activation of PI3K signaling with epidermal growth factor treatment enhanced CdCl2-induced Akt phosphorylation and ATF4 expression. Suppression of CdCl2-induced ATF4 expression by LY294002 treatment was markedly blocked by cycloheximide, a translation inhibitor, but not by MG-132, a proteasome inhibitor, or actinomycin D, a transcription inhibitor. CdCl2 exposure also induced phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448, glycogen synthase kinase-3α (GSK-3α) at Ser21, GSK-3β at Ser9, and 90 kDa ribosomal S6 kinase 2 (RSK2) at Ser227 in HK-2 cells. Treatment with rapamycin, an mTOR inhibitor, MK2206, an Akt inhibitor, and BI-D1870, a RSK inhibitor, partially suppressed CdCl2-induced ATF4 expression. Conversely, SB216763, a GSK-3 inhibitor, markedly inhibited the potency of LY294002 to suppress CdCl2-induced ATF4 expression. These results suggest that PI3K signaling diversely regulates the expression of ATF4 in a translation-dependent manner via downstream molecules, including mTOR, GSK-3α/β, and RSK2, and plays a role in protecting HK-2 cells from cadmium-induced damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol 7:261–269

    Article  CAS  PubMed  Google Scholar 

  • Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9:747–758

    Article  CAS  PubMed  Google Scholar 

  • Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz L-O (2007) Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch Biochem Biophys 463:175–182

    Article  CAS  PubMed  Google Scholar 

  • Belham C, Wu S, Avruch J (1999) Intracellular signalling: PDK1—a kinase at the hub of things. Curr Biol 9:R93–R96

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Yu S, Yao Z, Galson DL, Jiang Y, Zhang X, Fan J, Lu B, Guan Y, Luo M, Lai Y, Zhu Y, Kurihara N, Patrene K, Roodman GD, Xiao G (2010) Activating transcription factor 4 regulates osteoclast differentiation in mice. J Clin Invest 120:2755–2766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carpenter RL, Jiang B-H (2013) Roles of EGFR, PI3K, AKT, and mTOR in heavy metal-induced cancer. Curr Cancer Drug Targets 13:252–266

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontos CD, Huang S (2011) Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic Biol Med 50:624–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  CAS  PubMed  Google Scholar 

  • Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG (2010) TGFβ enforces activation of eukaryotic elongation factor-2 (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy. FEBS Lett 584:4268–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    Article  CAS  PubMed  Google Scholar 

  • Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285:14071–14077

    Article  CAS  PubMed  Google Scholar 

  • Fujiki K, Inamura H, Matsuoka M (2013) Phosphorylation of FOXO3a by PI3K/Akt pathway in HK-2 renal proximal tubular epithelial cells exposed to cadmium. Arch Toxicol. doi:10.1007/s00204-013-1077-6

    Google Scholar 

  • Hamada T, Tanimoto A, Sasaguri Y (1997) Apoptosis induced by cadmium. Apoptosis 2:359–367

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  • Hers I, Vincent EE, Tavaré JM (2011) Akt signalling in health and disease. Cell Signal 23:1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inageda K (2010) Insulin modulates induction of glucose-regulated protein 78 during endoplasmic reticulum stress via augmentation of ATF4 expression in human neuroblastoma cells. FEBS Lett 584:3649–3654

    Article  CAS  PubMed  Google Scholar 

  • Inagi R (2010) Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10:156–165

    Article  CAS  PubMed  Google Scholar 

  • Jefferson LS, Fabian JR, Kimball SR (1999) Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int J Biochem Cell Biol 31:191–200

    Article  CAS  PubMed  Google Scholar 

  • Jensen CJ, Buch M-B, Krag TO, Hemmings BA, Gammeltoft S, Frödin M (1999) 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem 274:27168–27176

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Liu L-Z, Jiang Y, Zhu Y, Guo NL, Barnett J, Rojanasakul Y, Agani F, Jiang B-H (2012) Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci 125:10–19

    Article  CAS  PubMed  Google Scholar 

  • Komoike Y, Inamura H, Matsuoka M (2012) Effects of salubrinal on cadmium-induced apoptosis in HK-2 human renal proximal tubular cells. Arch Toxicol 86:37–44

    Article  CAS  PubMed  Google Scholar 

  • Lian N, Lin T, Liu W, Wang W, Li L, Sun S, Nyman JS, Yang X (2012) Transforming growth factor β suppresses osteoblast differentiation via the vimentin activating transcription factor 4 (ATF4) axis. J Biol Chem 287:35975–35984

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Inageda K, Nishitai G, Matsuoka M (2006) Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect 114:859–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo J-Q, Chen D-W, Yu B (2013) Upregulation of amino acid transporter expression induced by l-leucine availability in L6 myotubes is associated with ATF4 signaling through mTORC1-dependent mechanism. Nutrition 29:284–290

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Call KM (1995) Cadmium-induced expression of immediate early genes in LLC-PK1 cells. Kidney Int 48:383–389

    Article  CAS  PubMed  Google Scholar 

  • Mérienne K, Jacquot S, Zeniou M, Pannetier S, Sassone-Corsi P, Hanauer A (2000) Activation of RSK by UV-light: phosphorylation dynamics and involvement of the MAPK pathway. Oncogene 19:4221–4229

    Article  PubMed  Google Scholar 

  • Misra UK, Gawdi G, Pizzo SV (2003) Induction of mitogenic signalling in the 1LN prostate cell line on exposure to submicromolar concentrations of cadmium. Cell Signal 15:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF, Nogawa K, Nordberg M, Friberg LT (2007) Cadmium. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals, 3rd edn. Academic Press, Burlington, pp 445–486

    Chapter  Google Scholar 

  • Pal S, Pal PB, Das J, Sil PC (2011) Involvement of both intrinsic and extrinsic pathways in hepatoprotection of arjunolic acid against cadmium induced acute damage in vitro. Toxicology 283:129–139

    Article  CAS  PubMed  Google Scholar 

  • Peterson RT, Beal PA, Comb MJ, Schreiber SL (2000) FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423

    Article  CAS  PubMed  Google Scholar 

  • Romeo Y, Zhang X, Roux PP (2012) Regulation and function of the RSK family of protein kinases. Biochem J 441:553–569

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  • Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    Article  PubMed  Google Scholar 

  • Son Y-O, Wang L, Poyil P, Budhraja A, Hitron JA, Zhang Z, Lee J-C, Shi X (2012) Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 264:153–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welsh GI, Miller CM, Loughlin AJ, Price NT, Proud CG (1998) Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett 421:125–130

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Liu Y, Templeton DM (2009) Pleiotropic effects of cadmium in mesangial cells. Toxicol Appl Pharmacol 238:315–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Department Fund of the Tokyo Women’s Medical University School of Medicine.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Matsuoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiki, K., Inamura, H. & Matsuoka, M. PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium. Arch Toxicol 88, 403–414 (2014). https://doi.org/10.1007/s00204-013-1129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1129-y

Keywords

Navigation