Skip to main content
Log in

Effects of salubrinal on cadmium-induced apoptosis in HK-2 human renal proximal tubular cells

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cadmium exposure is known to cause endoplasmic reticulum (ER) stress. In our current study, we examined the effects of salubrinal, a selective inhibitor of eukaryotic translation initiation factor 2 subunit α (eIF2α) dephosphorylation, on apoptotic cell death and ER stress-signaling events in HK-2 human renal proximal tubular cells exposed to cadmium chloride (CdCl2). Using phase-contrast microscopy and a cell viability assay, we observed that salubrinal suppressed CdCl2-induced cellular damage and cell death. Treatment with salubrinal reduced the number of TUNEL-positive cells and the cleavages of caspase-3 and poly(ADP-ribose) polymerase, but not the cleavage of light chain 3B, indicating protection from CdCl2-induced apoptosis but not autophagy. Although eIF2α remained phosphorylated after CdCl2 exposure to salubrinal-treated HK-2 cells, the expression of activating transcription factor 4 (ATF4) and the 78 kDa glucose-regulated protein (GRP78) was not increased. On the other hand, CdCl2-induced expression of C/EBP homologous protein (CHOP) was reduced by salubrinal treatment. Expression of ATF4, an upstream regulator of GRP78 and CHOP, appeared to be a prerequisite for full protection by salubrinal against cadmium cytotoxicity, because CdCl2-induced cellular damage was not fully suppressed in ATF4-deficient cells. Phosphorylated forms of mitogen-activated protein kinases (MAPKs), including c-Jun NH2-terminal kinase (JNK), p38, and extracellular signal-regulated protein kinase (ERK), increased after CdCl2 exposure, whereas salubrinal suppressed the phosphorylation of JNK and p38 but not ERK. These results suggest that salubrinal protects CdCl2-exposed HK-2 cells from apoptosis by suppressing cell death signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43:184–195

    Article  PubMed  CAS  Google Scholar 

  • Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  PubMed  CAS  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  PubMed  CAS  Google Scholar 

  • Chou YH, Chao PL, Tsai MJ, Cheng HH, Chen KB, Yang DM, Yang CH, Lin AMY (2008) Arsenite-induced cytotoxicity in dorsal root ganglion explants. Free Radic Biol Med 44:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Croute F, Beau B, Murat J-C, Vincent C, Komatsu H, Obata F, Soleilhavoup J-P (2005) Expression of stress-related genes in a cadmium-resistant A549 human cell line. J Toxicol Environ Health A 68:703–718

    Article  PubMed  CAS  Google Scholar 

  • Gardarin A, Chédin S, Lagniel G, Aude J-C, Godat E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76:1034–1048

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AMK, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein: implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858–20865

    Article  PubMed  CAS  Google Scholar 

  • Homma K, Katagiri K, Nishitoh H, Ichijo H (2009) Targeting ASK1 in ER stress-related neurodegenerative diseases. Expert Opin Ther Targets 13:653–664

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  PubMed  CAS  Google Scholar 

  • Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  PubMed  CAS  Google Scholar 

  • Inagi R (2010) Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10:156–165

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki M, Inageda K, Matsuoka M (2011) Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells. Toxicol Appl Pharmacol 251:209–216

    Article  PubMed  CAS  Google Scholar 

  • Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Inageda K, Nishitai G, Matsuoka M (2006) Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect 114:859–864

    Article  PubMed  CAS  Google Scholar 

  • Long K, Boyce M, Lin H, Yuan J, Ma D (2005) Structure-activity relationship studies of salubrinal lead to its active biotinylated derivative. Bioorg Med Chem Lett 15:3849–3852

    Article  PubMed  CAS  Google Scholar 

  • Luo S, Baumeister P, Yang S, Abcouwer SF, Lee AS (2003) Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through an upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem 278:37375–37385

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–1336

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF, Nogawa K, Nordberg M, Friberg LT (2007) Cadmium. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals, 3rd edn. Academic Press, Burlington, pp 445–486

    Chapter  Google Scholar 

  • Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  • Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  • Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    Article  PubMed  Google Scholar 

  • Sugisawa N, Matsuoka M, Okuno T, Igisu H (2004) Suppression of cadmium-induced JNK/p38 activation and HSP70 family gene expression by LL-Z1640–2 in NIH3T3 cells. Toxicol Appl Pharmacol 196:206–214

    Article  PubMed  CAS  Google Scholar 

  • Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  • Wang S-H, Shih Y-L, Lee C–C, Chen W-L, Lin C-J, Lin Y-S, Wu K-H, Shih C-M (2009) The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis. Chem Biol Interact 181:45–51

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Jiang H, Fan Y, Huang X, Shen J, Qi H, Li Q, Lu X, Shao J (2011) Phosphorylation of the α-subunit of the eukaryotic initiation factor-2 (eIF2α) alleviates benzo[a]pyrene-7, 8-diol-9, 10-epoxide induced cell cycle arrest and apoptosis in human cells. Environ Toxicol Pharmacol 31:18–24

    Article  PubMed  Google Scholar 

  • Yang W, Tiffany-Castiglioni E, Koh HC, Son Il-H (2009) Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells. Toxicol Lett 191:203–210

    Article  PubMed  CAS  Google Scholar 

  • Yokouchi M, Hiramatsu N, Hayakawa K, Kasai A, Takano Y, Yao J, Kitamura M (2007) Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death Differ 14:1467–1474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (21510073) from the Japan Society for the Promotion of Science.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Matsuoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komoike, Y., Inamura, H. & Matsuoka, M. Effects of salubrinal on cadmium-induced apoptosis in HK-2 human renal proximal tubular cells. Arch Toxicol 86, 37–44 (2012). https://doi.org/10.1007/s00204-011-0742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0742-x

Keywords

Navigation