Skip to main content
Log in

Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators

  • Inorganic compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

We present in this article an outline of some cyclotron-based irradiation techniques that can be used to directly radiolabel industrially manufactured nanoparticles, as well as two techniques for synthesis of labelled nanoparticles using cyclotron-generated radioactive precursor materials. These radiolabelled nanoparticles are suitable for a range of different in vitro and in vivo tracing studies of relevance to the field of nanotoxicology. A basic overview is given of the relevant physics of nuclear reactions regarding both ion-beam and neutron production of radioisotopes. The various issues that determine the practicality and usefulness of the different methods are discussed, including radioisotope yield, nuclear reaction kinetics, radiation and thermal damage, and radiolabel stability. Experimental details are presented regarding several techniques applied in our laboratories, including direct light-ion activation of dry nanoparticle samples, neutron activation of nanoparticles and suspensions using an ion-beam driven activator, spark-ignition generation of nanoparticle aerosols using activated electrode materials, and radiochemical synthesis of nanoparticles using cyclotron-produced isotopes. The application of these techniques is illustrated through short descriptions of some selected results thus far achieved. It is shown that these cyclotron-based methods offer a very useful range of options for nanoparticle radiolabelling despite some experimental difficulties associated with their application. For direct nanoparticle radiolabelling, if care is taken in choosing the experimental conditions applied, useful activity levels can be achieved in a wide range of nanoparticle types, without causing substantial thermal or radiation damage to the nanoparticle structure. Nanoparticle synthesis using radioactive precursors presents a different set of issues and offers a complementary and equally valid approach when laboratory generation of the nanoparticles is acceptable for the proposed studies, and where an appropriate radiolabel can be incorporated into the nanoparticles during synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abanades A, Aleixandre J, Andriamonje S, Angelopoulos A, Apostolakis A, Arnould H, Belle E, Bompas CA, Brozzi D, Bueno J, Buono S, Carminati F, Casagrande F, Cennini P, Collar JI, Cerro E, Moral RD, Dez S, Dumps L, Eleftheriadis C, Embid M, Fernandez R, Galvez J, Garca J, Geles C, Giorni A, Gonzalez E, Gonzalez O, Goulas I, Heuer D, Hussonnois M, Kadi Y, Karaiskos P, Kitis G, Klapisch R, Kokkas P, Lacoste V, Naour CL, Lopez C, Loiseaux JM, Martnez-Val JM, Meplan O, Nifenecker H, Oropesa J, Papadopoulos I, Pavlopoulos P, Perez-Enciso E, Perez-Navarro A, Perlado M, Placci A, Poza M, Revol J-P, Rubbia C, Rubio JA, Sakelliou L, Saldana F, Savvidis E, Schussler F, Sirvent C, Tamarit J, Trubert D, Tzima A, Viano JB, Vieira S, Vlachoudis V, Zioutas K (2002) Results from the TARC experiment: Spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing nuclear instruments and methods in physics research, section a: accelerators, spectrometers. Detectors and Associated Equipment 478:577–730

    CAS  Google Scholar 

  • Abbas K, Buono S, Burgio N, Cotogno G, Gibson N, Maciocco L, Mercurio G, Santagata A, Simonelli F, Tagziria H (2009) Development of an accelerator driven neutron activator for medical radioisotope production. Nucl Instr Meth Phys Res A 601:223–228

    Article  CAS  Google Scholar 

  • Abbas K, Cydzik I, Del Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W (2010) Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12:2435–2443

    Article  CAS  Google Scholar 

  • Ackland G (2010) Controlling radiation damage. Science 327:1587–1588

    Article  PubMed  CAS  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Arnould H, Bompas CA, Del Moral R, Lacoste V, Vlachoudis V, Aleixandre J, Bueno J, Cerro E, Gonzalez O, Tamarit J, Andriamonje S, Brozzi D, Buono S, Carminati F, Casagrande F, Cennini P, Collar JI, Dumps L, Geles C, Goulas I, Fernandez R, Kadi Y, Klapisch R, Oropesa J, Placci A, Revol J-P, Rubbia C, Rubio JA, Saldana F, Embid M, Galvez J, Lopez C, Perez-Enciso E, Poza M, Sirvent C, Vieira S, Abanades A, Garcia J, Martinez-Val JM, Perlado M, Gonzalez E, Hussonnois M, Le Naour C, Trubert D, Belle E, Giorni A, Heuer D, Loiseaux JM, Meplan O, Nifenecker H, Schussler F, Viano JB, Angelopoulos A, Apostolakis A, Karaiskos P, Sakelliou L, Kokkas P, Pavlopoulos P, Eleftheriadis C, Kitis G, Papadopoulos I, Savvidis E, Tzima A, Zioutas K, Diez S, Perez-Navarro A (1999) Experimental verification of neutron phenomenology in lead and transmutation by adiabatic resonance crossing in accelerator driven systems. Physics Letters B 458:167–180

    Article  CAS  Google Scholar 

  • Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method. Langmuir 20:8336–8342

    Article  PubMed  CAS  Google Scholar 

  • Bai X-M, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327:1631–1634

    Article  PubMed  CAS  Google Scholar 

  • Balbus JM, Florini K, Denison RA, Walsh SA (2007) Protecting workers and the environment: an environmental NGO’s perspective on nanotechnology. Journal of Nanoparticles Research 9:11–22

    Article  Google Scholar 

  • Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. Journal of Magnetism and Magnetic Materials 311:10–16

    Article  CAS  Google Scholar 

  • Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Progr Phys 62:1181–1221

    Article  CAS  Google Scholar 

  • Banhart F (2006) Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J Mater Sci 41:4505–4511

    Article  CAS  Google Scholar 

  • Bodemann R, Lange HJ, Leya I, Michel R, Schiekel T, Rosel R, Herpers U, Hofmann HJ, Dittrich B, Suter M, Wolfli W, Holmqvist B, Conde H, Maimborg P (1993) Production of residual nuclei by proton-induced reaction on C, N, O, Mg, Al and Si. Nucl Inst Meth Phys Res B 82:9–31

    Article  CAS  Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  • Cao J, Wang Y, Yu J, Xia J, Zang C, Yin D, Häfeli UO (2004) Preparation and radiolabeling od surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J Magnetism Magnetic Materials 277:165–174

    Article  CAS  Google Scholar 

  • Caps R, Fricke J (2000) Thermal conductivity of opacified powder filler materials for vacuum insulations. Int J Thermophysics 21:445–452

    Article  CAS  Google Scholar 

  • De Kok TMCM, Driece HAL, Hogervorst JGF, Briedé JJ (2006) Toxicological assessment of ambient traffic-related particulate matter: a review of recent studies. Mutat Res 613:103–122

    Article  PubMed  Google Scholar 

  • DeLouise L, Mortensen L, Elder A (2009) Breeching epithelial barriers–physiochemical factors impacting nanomaterial translocation and toxicity. In: Webster TJ (ed) Safety of nanoparticles, nanostructure science and technology. Springer, Berlin, pp 33–62

    Google Scholar 

  • Fischer FD, Waitz T, Vollath D, Simha NK (2008) On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog Mater Sci 53:481–527

    Article  CAS  Google Scholar 

  • Froment P, Tilquin I, Cogneau M, Delbar Th, Vervier J, Ryckewaert G (2002) The production of radioisotopes for medical applications by the adiabatic resonance crossing (ARC) technique. Nucl Instr Meth Phys Res A 493:165–175

    Article  CAS  Google Scholar 

  • Geiser M, Kreyling W (2010) Deposition and kinetics of inhaled nanoparticles. Particle Fibre Toxicol. doi:10.1186/1743-8977-7-2

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  PubMed  Google Scholar 

  • Gul MO, Jones SA, Dailey LA, Nacer H, Ma Y, Sadouki F, Hider R, Forbes B (2009) A poly(vinyl alcohol) nanoparticle platform for kinetic studies of inhaled particles. Inhalation Toxicology 21:631–640

    Article  PubMed  CAS  Google Scholar 

  • Haddad F, Ferrer L, Guertin A, Carlier T, Michel N, Barbet J, Chatal J-F (2008) ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. European Journal of Nuclear Medicine and Molecular Imaging 35:1377–1387

    Article  PubMed  Google Scholar 

  • Häfeli UO, Roberts WK, Pauer GJ, Kraeft S-K, Macklis RM (2001) Stability of biodegradable rhenium (Re-186 and Re-188) microspheres after neutron activation. Appl Radiat Isot 54:869–879

    Article  PubMed  Google Scholar 

  • Hamoudeh M, Fessi H, Mehier H, Al Faraj A, Canet-Soulas E (2008a) Dirhenium decacarbonyl-loaded PLLA nanoparticles: Influence of neutron irradiation and preliminary in vivo administration by the TMT technique. International Journal of Pharmaceutics 348:125–136

    Article  PubMed  CAS  Google Scholar 

  • Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008b) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60:1329–1346

    Article  PubMed  CAS  Google Scholar 

  • Handy RD, Henry TB, Scrown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish. Ecotoxicology 15:396–409

    Article  Google Scholar 

  • He C, Sasaki T, Usui H, Shimizu Y, Koshizaki N (2007) Fabrication of ZnO nanoparticles by pulsed laser ablation in aqueous media and pH-dependent particle size: an approach to study the mechanism of enhanced green photoluminescence. J Photochem Photobiol A Chemistry 191:66–73

    Article  CAS  Google Scholar 

  • Helsper C, Mölter W, Löffler F, Wadenpohl C, Kaufmann S, Wenninger G (1993) Investigations of a new aerosol generator for the production of carbon aggregate particles. Atmos Environ 27A:1271–1275

    CAS  Google Scholar 

  • Hemon S, Gourbilleau F, Dufour Ch, Paumier E, Dooryhee E, Rouanet A (1997) TEM study of irradiation effects on tin oxide nanopowder. Nucl Instr Meth Phys Res B 122:526–529

    Article  CAS  Google Scholar 

  • Hinds WC (1982) Aerosol technology: properties, behavior and measurement of airborne particles. Wiley, New York

    Google Scholar 

  • Hirschhorn JS (1969) Introduction to powder metallurgy. American Powder Metallurgy Institute, New York

    Google Scholar 

  • Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnology 2:12. doi:10.1186/1477-3155-2-12

  • Hong H, Zhang Y, Sun J, Cai W (2009) Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4:399–413

    Article  PubMed  CAS  Google Scholar 

  • Hümmer E, Rettelbach Th, Lu X, Fricke J (1993) Opacified silica aerogel powder insulation. Thermochimica Acta 218C:269–276

    Article  Google Scholar 

  • IAEA (2008) Experimental Nuclear Reaction Data (EXFOR). Available under http://www-nds.iaea.org/exfor/exfor.htm (continuously updated)

  • Inagaki M, Kondo N, Nonaka R, Ito E, Toyoda M, Sogabe K, Tsumura T (2009) Structure and photoactivity of titania derived from nanotubes and nanofibres. J Hazardous Materials 161:1514–1521

    Article  CAS  Google Scholar 

  • Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target carrier. Nanotoday 2:18–29

    Google Scholar 

  • Jain R, Dandekar P, Patravale V (2009) Diagnostic nanocarriers for sentinel lymph node imaging. Journal of Controlled Release 138:90–102

    Article  PubMed  CAS  Google Scholar 

  • Jia X, Chen X, Lu Y, Han X, Xu Z (2009) Tracing transport of chitosan nanoparticles and molecules in Caco-2 cells by fluorescent labelling. Carbohydr Polym 78:323–329

    Article  CAS  Google Scholar 

  • Kanapilly GM, Goh CH (1973) Some factors affecting the in vitro rates of dissolution of respirable particles of relatively low solubility. Health Phys 25:225–237

    Article  PubMed  CAS  Google Scholar 

  • Kapp N, Kreyling W, Schulz H, Im Hof V, Gehr P, Semmler M, Geiser M (2004) Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc Res Tech 63(5):298–305

    Article  PubMed  Google Scholar 

  • Kaur S, Nieuwenhuijsen MJ, Colvile RN (2007) Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmos Environ 41:4781–4810

    Article  CAS  Google Scholar 

  • Kilmametov AR, Gunderov DV, Valiev RZ, Balogh AG, Hahn H (2008) Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy. Scripta Mater 59:1027–1030

    Article  CAS  Google Scholar 

  • Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron and ion beams. Nature Materials 6:723–733

    Article  PubMed  CAS  Google Scholar 

  • Krewski D, Rainham D (2007) Ambient air pollution and population health: overview. J Toxicol Environm Health Part A 70:275–283

    Article  CAS  Google Scholar 

  • Kreyling WG, Godleski JJ, Kariya ST, Rose RM, Brain JD (1990) In vitro dissolution of uniform cobalt oxide particles by human and canine alveolar macrophages. Am J Respir Cell Mol Biol 2:413–422

    PubMed  CAS  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:1513–1530

    Article  CAS  Google Scholar 

  • Kreyling WG, Biswas P, Messing ME, Gibson N, Geiser M, Wenk A, Sahu M, Deppert K, Cydzik I, Wigge C, Schmid O, Semmler-Behnke M (2010) Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. J Nanopart Res 13:511–524

    Google Scholar 

  • Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 108:941–947

    Article  PubMed  CAS  Google Scholar 

  • Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality: Extented follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 173:667–672

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Sasaki T, Koshizaki N (1999) Pressure dependence of the morphology and size of cobalt(II, III)oxide nanoparticles prepared by pulsed laser ablation. Appl Phys A69:115–118

    Google Scholar 

  • Liang XG, Ge XS, Chang YP, Liu G, Wu DP (1992) The measurement of thermal conductivities of silica and carbon black powders at different pressures by thermal conductivity probe. Journal of Themal Science 1:75–79

    Article  CAS  Google Scholar 

  • Liang S, Wang Y, Zhang C, Liu X, Liu Z, Xu R, Yin D (2006) Synthesis of amino-modified magnetite nanoparticles coated with Hepama-1 and radiolabelled with 188Re for bio-magnetically targeted radiotherapy. J Radioanal Nucl Chem 269:3–7

    Article  CAS  Google Scholar 

  • Lieser KH (2001) Nuclear and radiochemistry—fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Lysenko V, Roussel PH, Remaki B, Delhomme G, Dittmar A, Barbier D, Strikha V, Martelet C (2000) Study of nano-porous silicon with low thermal conductivity as thermal insulating material. J Porous Mater 7:177–182

    Article  CAS  Google Scholar 

  • Ma ZY, Dosev D, Kennedy IM (2009) A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver. Nanotechnology 20. doi:10.1088/0957-4484/20/8/085608

  • Magill J, Pfennig G, Galy J (2006) Karlsruher Nuklidkarte, 7th edn. Haberbeck GmbH, Germany

    Google Scholar 

  • Mailänder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomolecules 10:2379–2400

    Google Scholar 

  • Marmorato P, Simonelli F, Abbas K, Kozempel J, Holzwarth U, Franchini F, Ponti J, Rossi F (2011) Gibson N 56Co radiolabelled Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines. J Nanopart Res (submitted)

  • Maynard AD, Kuempel ED (2005) Airborn nanostructured particles and occupational health. J Nanoparticle Research 7:587–614

    Article  CAS  Google Scholar 

  • Mughabghab SF (2006) Atlas of neutron resonances–resonance parameters and thermal cross sections Z = 1–100, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Nijsen JFW, Zonnenberg BA, Woittiez JRW, Rook DW, Swildens-Van Woudenberg IA, Van Rijk PP, Van het Schip AD (1999) Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: Effects of preparation and neutron activation techniques. Eur J Nucl Med 26:699–704

    Article  PubMed  CAS  Google Scholar 

  • Nita N, Schaeublin R, Victoria M (2004) Impact of irradiation on the microstructure of nanocrystalline materials. J Nucl Mat 329–333:953–957

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  Google Scholar 

  • OECD (2008) OECD environment, health and safety publications, series on the safety of manufactured nanomaterials no. 6: working party on manufactured nanomaterials: list of manufactured nanomaterials and list of endpoints for phase one of the OECD testing programme ENV/JM/MONO(2008)13/REV. Organisation for Economic Co-Operation and Development, Paris

  • OECD-NEA (2009) Joint evaluated fission and fusion file (JEFF), version JEFF 3.1.1. http://www.nea.fr/dbforms/data/eva/evatapes/jeff_31/

  • Oughton DH, Hertel-Aas T, Pellicer E, Mendoza E, Joner EJ (2008) Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ Toxicol Chem 27:1883–1887

    Article  PubMed  CAS  Google Scholar 

  • Podgoršak EB (2006) Radiation physics for medical physicists. Springer, Berlin

    Google Scholar 

  • Ponti J, Colognato R, Franchini F, Gioria S, Simonelli F, Abbas K, Uboldi C, Kirkpatrick CJ, Holzwarth U, Rossi F (2009) A quantitative in vitro approach to study the intracellular fate of gold nanoparticles: from synthesis to cytotoxicity. Nanotoxicology 3:296–306

    Article  CAS  Google Scholar 

  • Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219

    Article  CAS  Google Scholar 

  • Prussin SG (2007) Nuclear physics for applications. Wiley, Berlin

    Google Scholar 

  • Puretzky AA, Geohegan DB, Fan X, Pennycook SJ (2000) Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Appl Phys A70:153–160

    Google Scholar 

  • Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, Welch MJ (2005) 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 46:1210–1218

    PubMed  Google Scholar 

  • Roth C, Ferron GA, Karg E, Lentner B, Schumann G, Takenaka S, Heyder J (2004) Generation of ultrafine particles by spark discharging. Aerosol Sci Technol 38:228–235

    Article  CAS  Google Scholar 

  • Rubbia C (1997) Resonance enhanced neutron captures for element activation and waste transmutation. CERN-LHC/97-0040EET

  • Rubbia C (1998) Patent PTC WO 98/59347

  • Samaras M, Derlet PM, Van Swygenhoven H, Victoria M (2006) Atomic scale modelling of the primary damage state of irradiated fcc and bcc nanocrystalline metals. J Nucl Mat 351:47–55

    Article  CAS  Google Scholar 

  • Schrand AM, Johnson J, Dai L, Hussain SM, Schlager JJ; Zhu L, Hong Y, Osawa E (2009) Cytotoxicity and genotoxicity of carbon nanomaterials. In: Webster TJ (ed) Safety of nanoparticles, nanostructure science and technology. Springer, Berlin, pp 159–187

  • Shultis JK, Faw RE (2002) Fundamentals of nuclear science and engineering. Marcel Dekker, New York

    Book  Google Scholar 

  • Shultz MD, Calvin S, Fatouros PP, Morrison SA, Carpenter EE (2007) Enhanced ferrite nanoparticles as MRI contrast agents. Journal of Magnetism and Magnetic Materials 311:464–468

    Article  CAS  Google Scholar 

  • Simonelli F, Marmorato P, Abbas K, Ponti J, Kozempel J, Holzwarth U, Franchini F, Rossi F (2011) Cyclotron production of radioactive CeO2 nanoparticles and their application for in vitro uptake studies. IEEE Trans NanoBiosci (submitted)

  • Sofou S (2008) Radionuclide carriers for targeting cancer. International Journal of Nanomedicine 3:181–199

    Article  PubMed  CAS  Google Scholar 

  • Stoller RE, Kamenski Osetsky, Yu N (2009) Length-scale effects in cascade damage production in iron. Mater Res Soc Symp Proc 1125:109–120

    Google Scholar 

  • Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24:621–638

    Article  PubMed  CAS  Google Scholar 

  • Thrash TP, Cagle DW, Alford JM, Wright K, Ehrhardt GJ, Mirzadeh S, Wilson LJ (1999) Toward fullerene-based radiopharmaceuticals: high-yield neutron activation of endohedral 165Ho metallofullerenes. Chem Phys Lett 308:329–336

    Article  CAS  Google Scholar 

  • Tilquin I, Froment P, Cogneau M, Delbar Th, Vervier J, Ryckewaert G (2005) Experimental measurements of neutron fluxes produced by proton beams (23–80 MeV) on Be and Pb targets. Nucl Instr Meth Phys Res A 545:339–343

    Article  CAS  Google Scholar 

  • Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18:91–95

    Article  CAS  Google Scholar 

  • Vollath D (1994) A cascaded microwave plasma source for synthesis of ceramic nanocomposite powders. Mater Res Soc Symp Proc 347:629–634

    Article  CAS  Google Scholar 

  • Vollath D (2008) Nanomaterials: an introduction to synthesis, properties and application. Wiley, Weinheim; ISBN: 978-3-527-31531-4

  • Vollath D, Sickafus KE (1992) Synthesis of nanosized ceramic oxide powders by microwave plasma reactions. NanoStruct Mater 1:427–438

    Article  CAS  Google Scholar 

  • Wooldridge MS (1998) Gas phase combustion synthesis of particles. Prog Energy Combust Sci 24:63–87

    Article  CAS  Google Scholar 

  • Xu Y, Li Q (2007) Multiple fluorescent labelling of silica nanoparticles with lanthanide chelates for highly sensitive time-resolved immunofluorometric assays. Clin Chem 53:1505–1510

    Article  Google Scholar 

  • Zawadski M (2008) Preparation and characterization of ceria nanoparticles by microwave-assisted solvothermal process. J Alloys Compounds 454:347–351

    Article  Google Scholar 

  • Zhang C, Cao J, Yin D, Wang Y, Feng Y, Tan J (2004) Preparation and radiolabeling of human serum albumin (HAS)-coated magnetite nanoparticles for magnetically targeted therapy. Appl Radiat Isot 61:1255–1259

    Article  CAS  Google Scholar 

  • Zhu XP, Suzuki T, Nakayama T, Suematsu H, Jiang W, Niihara K (2006) Underwater laser ablation approach to fabricating monodisperse metallic nanoparticles. Chem Phys Lett 427:127–131

    Article  CAS  Google Scholar 

  • Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM—the stopping and range of ions in matter. See http://www.srim.org/

Download references

Acknowledgments

The valuable support of W. Horstmann and F. Arroja in the development, fabrication and improvement of the NP irradiation facilities is gratefully acknowledged. Part of the work has been supported by the European Union’s 7th Framework Programme projects “NeuroNano” (NMP4-SL-2008-214547) and ENPRA (NMP4-SL-2009-228798), as well as the 6th Framework Programme project CellNanoTox (NMP4-CT-2006-032731). The Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH) received further support from the German Umweltbundesamt project Z6—55 410-31/3. The neutron activations have been performed with the ARC activator set up and funded within the EUREKA Project No. 3525 INBARCA (Innovative Nanosphere Brachytherapy using Adiabatic Resonance Crossing with Accelerators).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, N., Holzwarth, U., Abbas, K. et al. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch Toxicol 85, 751–773 (2011). https://doi.org/10.1007/s00204-011-0701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0701-6

Keywords

Navigation