Skip to main content
Log in

Suppressive effect of enzymatically modified isoquercitrin on phenobarbital-induced liver tumor promotion in rats

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

To investigate the effect of enzymatically modified isoquercitrin (EMIQ) on hepatocellular tumor promotion induced by phenobarbital (PB), male rats were administered a single intraperitoneal injection of 200 mg/kg N-diethylnitrosamine (DEN) and then fed with a diet containing PB (500 ppm) for 8 weeks, with or without EMIQ (2,000 ppm) in the drinking water. One week after PB administration, rats underwent a two-thirds partial hepatectomy. The PB-induced increase in the number and area of glutathione S-transferase placental form-positive foci and the proliferating cell nuclear antigen-positive ratio was significantly suppressed by EMIQ. Real-time reverse transcription–polymerase chain reaction analysis revealed increases in mRNA expression levels of Cyp2b2 and Mrp2 in the DEN-PB and DEN-PB-EMIQ groups compared with the DEN-alone group, while the level of Mrp2 decreased in the DEN-PB-EMIQ group compared with the DEN-PB group. There were no significant changes in microsomal reactive oxygen species (ROS) production and oxidative stress markers between the DEN-PB and DEN-PB-EMIQ groups. Immunohistochemically, the constitutive active/androstane receptor (CAR) in the DEN-PB group was clearly localized in the nuclei, but its immunoreactive intensity was decreased in the DEN-PB-EMIQ group. These results indicate that EMIQ suppressed the liver tumor-promoting activity of PB by inhibiting nuclear translocation of CAR, and not by suppression of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams TB, McGowen MM, Williams MC, Cohen SM, Feron VJ, Goodman JI, Marnett LJ, Munro IC, Portoghese PS, Smith RL, Waddell WJ (2007) The FEMA GRAS assessment of aromatic substituted secondary alcohols, ketones, and related esters used as flavor ingredients. Food Chem Toxicol 45:171–201

    Article  PubMed  CAS  Google Scholar 

  • Akiyama T, Washino T, Yamada T, Koda T, Maitani T (2000) Constituents of enzymatically modified isoquercitrin and enzymatically modified rutin (extract). J Food Hyg Soc Jpn 41:54–60

    CAS  Google Scholar 

  • Alcorn JA, Feitelberg SP, Brenner DA (1990) Transient induction of c-jun during hepatic regeneration. Hepatology 11:909–915

    Article  PubMed  CAS  Google Scholar 

  • Coni P, Simbula G, de Prati AC, Menegazzi M, Suzuki H, Sarma DS, Ledda-Columbano GM, Columbano A (1993) Differences in the steady state levels of c-fos, c-jun and c-myc messenger RNA during mitogen-induced liver growth and compensatory regeneration. Hepatology 17:1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Deguchi Y, Yamada T, Hirose Y, Nagahori H, Kushida M, Sumida K, Sukata T, Tomigahara Y, Nishioka K, Uwagawa S, Kawamura S, Okuno Y (2009) Mode of action analysis for the synthetic pyrethroid metofluthrin-induced rat liver tumors: evidence for hepatic CYP2B induction and hepatocyte proliferation. Toxic Sci 108:69–80

    Article  CAS  Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M, Jin M, Saegusa Y, Okamura T, Tasaki M, Umemura T, Mitsumori K (2008) β-Naphthoflavone enhances oxidative stress responses and the induction of preneoplastic lesions in a diethylnitrosamine-initiated hepatocarcinogenesis model in partially hepatectomized rats. Toxicology 244:179–189

    Article  PubMed  CAS  Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M, Jin M, Kawai M, Saegusa Y, Okamura T, Umemura T, Mitsumori K (2009) Involvement of oxidative sterss in hepatocellular tumor-promoting activity of oxfendazole in rats. Arch Toxicol 83:503–511

    Article  PubMed  CAS  Google Scholar 

  • Facchini LM, Penn LZ (1998) The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J 12:633–651

    PubMed  CAS  Google Scholar 

  • Feldman D, Swarm R, Becker J (1981) Ultrastructural study of rat liver neoplasms after long-term treatment with phenobarbital. Cancer Res 41:2151–2162

    PubMed  CAS  Google Scholar 

  • Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  PubMed  CAS  Google Scholar 

  • Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxygnanosine and 8-oxo-deoxyguanine. Proc Natl Acad Sci USA 95:228–293

    Article  Google Scholar 

  • Honkakoski P, Zelko I, Sueyoshi T, Neghishi M (1998) The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 18:5652–5658

    PubMed  CAS  Google Scholar 

  • Imaoka S, Osada M, Minamiyama Y, Yukimura T, Toyokuni S, Takemura S, Hiroi T, Funae Y (2004) Role of phenobarbital-inducible cytochrome P450 s as a source of active oxygen species in DNA-oxidation. Cancer Lett 203:117–125

    Article  PubMed  CAS  Google Scholar 

  • Inoue J, Gohda J, Akiyama T, Semba K (2007) NF-kappaB activation in development and progression of cancer. Cancer Sci 98:268–274

    Article  PubMed  CAS  Google Scholar 

  • Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154:103–116

    PubMed  CAS  Google Scholar 

  • Japanese Ministry of Health and Welfare (1996) The list of existing food additives. Japanese Ministry of Health and Welfare, Tokyo. (Notification No. 120)

  • Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M (1999) Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol 19:6318–6322

    PubMed  CAS  Google Scholar 

  • Kinoshita A, Wanibuchi H, Imaoka S, Ogawa M, Masuda C, Morimura K, Funae Y, Fukushima S (2002) Formation of 8-hydroxydeoxyguanosine and cell-cycle arrest in the rat liver via generation of oxidative stress by phenobarbital: association with expression profiles of p21(WAF1/Cip1), cyclin D1 and Ogg1. Carcinogenesis 23:341–349

    Article  PubMed  CAS  Google Scholar 

  • Kruijer W, Skelly H, Bltteri F, Van der Putten H, Barber JR, Verma IM, Leffert LH (1986) Proto-oncogene expression in regenerating liver is simulated in cultures of primary adult rat hepatocytes. J Biol Chem 261:7929–7933

    PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ (2004) Phenobarbital for the treatment of epilepsy in the 21st Century: a critical review. Epilepsia 45:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Maglich JM, Stoltz CM, Goodwin B, Brown DH, Moore JT, Kliewer SA (2002) Nuclear pregnane X receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 62:638–646

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  PubMed  CAS  Google Scholar 

  • McDonald ER III, El-Deiry WS (2000) Cell cycle control as a basis for cancer drug development (Review). Int J Oncol 16:871–886

    PubMed  CAS  Google Scholar 

  • McLaughlin MM, Kumar S, McDonnell PC, Horn SV, Lee JC, Livi GP, Young PR (1996) Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 271:8488–8492

    Article  PubMed  CAS  Google Scholar 

  • Muguruma M, Unami A, Kanki M, Kuroiwa Y, Nishimura J, Dewa Y, Umemura T, Oishi Y, Mitsumori K (2007) Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology 236:61–75

    Article  PubMed  CAS  Google Scholar 

  • Muguruma M, Kawai M, Dewa Y, Nishimura J, Saegusa Y, Yasuno H, Jin M, Matsumoto S, Takabatake M, Arai K, Mitsumori K (2009) Threshold dose of piperonyl butoxide that induces reactive oxygen species-mediated hepatocarcinogenesis in rats. Arch Toxicol 83:183–193

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Wanibuchi H, Ogawa M, Kinoshita A, Morimura K, Hiroi T, Funae Y, Kishida H, Nakae D, Fukushima S (2002) Promoting effects of monomethylarsonic acid, dimethylarsinic acid and trimethylarsine oxide on induction of rat liver preneoplastic glutathione S-transferase placental form positive foci: a possible reactive oxygen species mechanism. Int J Cancer 100:136–139

    Article  PubMed  CAS  Google Scholar 

  • Nishimura J, Saegusa Y, Dewa Y, Jin M, Kawai M, Kemmochi S, Harada T, Hayashi S, Shibutani M, Mitsumori K (2010) Antioxidant enzymatically modified isoquercitrin or melatonin supplementation reduces oxidative stress- mediated hepatocellular tumor promotion of oxfendazole in rats. Arch Toxicol 84:143–153

    Article  PubMed  CAS  Google Scholar 

  • O’Farrel PP (2001) Triggering the all-or-nothing switch into mitosis. Trends Cell Biol 11:512–519

    Article  Google Scholar 

  • Ohkawa H, Ohnishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Peraino C, Fry RJM, Staffeldt EF (1978) Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene. Cancer Res 31:1506–1512

    Google Scholar 

  • Phillips JM, Burgoon LD, Goodman JI (2009) The constitutive active/androstane receptor facilitates unique phenobarbital–induced expression changes of genes involved in key pathways in precancerous liver and liver tumors. Toxic Sci 110:319–333

    Article  CAS  Google Scholar 

  • Puntarulo S, Cederbaum AI (1998) Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radic Biol Med 24:1324–1330

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld JM, Vargas R Jr, Xie W, Evans RM (2003) Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol 17:1268–1282

    Article  PubMed  CAS  Google Scholar 

  • Sansregret L, Gallo D, Santaguida M, Leduy L, Harada R, Nepveu A (2010) Hyperphosphorylation by cyclin D/CDK1 in mitosis resets CUX1 DNA binding clock at each cell cycle. J Biol Chem 285:32834–32843

    Article  PubMed  CAS  Google Scholar 

  • Serron SC, Dwivedi N, Backes WL (2000) Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes. Toxicol Appl Pharmacol 164:305–311

    Article  PubMed  CAS  Google Scholar 

  • Shelby MK, Kalaassen CD (2006) Induction of rat UDP-glucuronosyltransferases in liver and duodenum by microsomal enzyme inducers that activate various transcriptional pathways. Drug Metabol Dispos 34:1772–1778

    Article  CAS  Google Scholar 

  • Smith RL, Cohen SM, Doull J, Feron VJ, Goodman JI, Marnett LJ, Munro IC, Portoghese PS, Waddell WJ, Wagner BM, Adams TB (2005) Criteria for the safety evaluation of flavoring substances: The Expert Panel of the Flavor and Extract Manufacturers Association. Food Chem Toxicol 43:1141–1177

    Article  PubMed  CAS  Google Scholar 

  • Sueyoshi T, Kawamoto T, Zelko I, Honkakoshi P, Negishi M (1999) The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 274:6043–6046

    Article  PubMed  CAS  Google Scholar 

  • Umemura T, Kuroiwa Y, Kitamura Y, Ishii Y, Kanki K, Kodama Y, Itoh K, Yamamoto M, Nishikawa A, Hirose M (2006) A crucial role of Nrf2 in in vivo defense against oxidative damage by an environmental pollutant, pentachlorophenol. Toxicol Sci 90:111–119

    Article  PubMed  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2007) Agency response letter GRAS notice No. GRN 000220 [alpha-glycosyl isoquercitrin]. U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition. Retrieved October 1, 2010, from http://www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/GRASListings/ucm153867.htm

  • Wang H, LeCluyse EL (2003) Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin Pharmacokinet 42:1331–1357

    Article  PubMed  CAS  Google Scholar 

  • Waxman DJ, Azaroff L (1992) Phenobarbital induction of cytochrome P-450 gene expression. Biochem J 281:577–592

    PubMed  CAS  Google Scholar 

  • White KL, Vierkant RA, Phelan CM, Fridley BL, Anderson S, Knutson KL, Schildkraut JM, Cunningham JM, Kelemen LE, Pankrats VS, Rider DN, Liebou M, Hartmann LC, Sellers TA, Goode EL (2009) Polymorphisms in NF-kappaB inhibitors and risk of epithelial ovarian cancer. BMC Cancer 9:170

    Article  PubMed  Google Scholar 

  • Xie W, Yeuh M, Pandya AR, Saini SPS, Negishi Y, Bottroff BS, Cabrera Y, Tukey RH, Evans RM (2002) Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. PNAS 100:4150–4155

    Article  Google Scholar 

  • Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR (2004) The orphan nuclear receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res 64:7197–7200

    Article  PubMed  CAS  Google Scholar 

  • Yokohira M, Yamakawa K, Saoo K, Matsuda Y, Hosokowa K, Hashimoto N, Kuno T, Imaeda K (2008) Antioxidant effects of flavonoids used as food additives (purple corn color, enzymatically modified isoquercitrin, and isoquercitrin) on liver carcinogenesis in a rat medium-term bioassay. J Food Sci 73:561–568

    Article  Google Scholar 

  • Yoshihara S, Makishita M, Suauki N, Ohta S (2001) Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicol Sci 62:221–227

    Article  PubMed  CAS  Google Scholar 

  • Yueh MF, Tukey RH (2007) Nrf2-Keap1 signaling pathway regulates human UGT1A1 expression in vitro and in transgenic UGT1 mice. J Biol Chem 282:8749–8758

    Article  PubMed  CAS  Google Scholar 

  • Zelko I, Sueyoshi T, Kawamoto T, Moore R, Negishi M (2001) The peptide near the C terminus regulates receptor car nuclear translocation induced by xenochemicals in mouse liver. Mol Cell Biol 21:2838–2846

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunitoshi Mitsumori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, R., Shimamoto, K., Ishii, Y. et al. Suppressive effect of enzymatically modified isoquercitrin on phenobarbital-induced liver tumor promotion in rats. Arch Toxicol 85, 1475–1484 (2011). https://doi.org/10.1007/s00204-011-0696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0696-z

Keywords

Navigation