Skip to main content
Log in

Developmental exposure to methylmercury and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) affects cerebral dopamine D1-like and D2-like receptors of weanling and pubertal rats

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

MeHg (0.5 mg/kg/day) and/or PCB153 (5 mg/kg/day) effects, administered orally to rat dams (GD7-PND21), were explored in PND21 and PND36 offspring brain in terms of density (Bmax) and affinity (Kd) of dopamine D1-like (D1-Rs) and D2-like receptors (D2-Rs), by saturation binding studies. D1-Rs decreased density in both cortex and striatum (15–30%) by MeHg and PCB153, either alone or combined, without additivity in PND21 males. Changes disappeared by PND36. In females, only MeHg caused a 15% Bmax decrease in striatum. D2-Rs enhanced density (23–50%) and reduced affinity in cortex to a similar extent by all treatments in both weanling and pubertal males. Affinity was also decreased in females by all types of exposure at both ages, while density was enhanced by PCB153 only in a delayed manner (PND36). No changes were detected in striatum. In MeHg and MeHg + PCB153 pup cortex, Hg concentrations ranged, on PND21, between 0.25 and 0.89 and 0.94–1.40 μg/g tissue, respectively, and were 5- to sixfold lower 2 weeks later. PCB153 levels, in PCB153 ± MeHg treated rats, were about 15 μg/g tissue (PND21) and 4–8 μg/g tissue (PND36). In striatum, the Hg and PCB153 concentrations were similar to those in cortex. Brain kinetics trend also applied to blood PCB153 or Hg levels. Perinatal exposure to MeHg and/or PCB153 affects D1- and D2-Rs in a gender-, time-, and brain area-dependent manner. Combined treatment does not exacerbate the neurochemical effects of the individual compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Bw:

Body weight

DA:

Dopamine

D1-Rs:

Dopamine D1-like receptors

D2-Rs:

Dopamine D2-like receptors

DAT:

Dopamine transporter

DOPAC:

Dihydroxyphenylacetic acid

GD:

Gestational day

PCB153:

2,2′,4,4′,5,5′-Hexachlorobiphenyl

HVA:

Homovanillic acid

MeHg:

Methylmercury

PCB:

Polychlorinated biphenyl

PND:

Postnatal day

5-HT:

Serotonin/5-hydroxytriptamine

TH:

Tyrosine hydroxylase

VMAT:

Vesicular monoamine transporter

References

  • Andrzejewski ME, Spencer RC, Kelley AE (2005) Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Neuroscience 135:335–345

    Article  PubMed  CAS  Google Scholar 

  • Bemis JC, Seegal RF (1999) Polychlorinated biphenyl and methylmercury act synergistically to reduce rat brain dopamine content in vitro. Environ Health Perspect 107:879–885

    Article  PubMed  CAS  Google Scholar 

  • Bemis JC, Seegal RF (2000) Polychlorinated biphenyls and methylmercury alter intracellular calcium concentrations in rat cerebellar granule cells. Neurotoxicology 21:1123–1134

    PubMed  CAS  Google Scholar 

  • Bemis JC, Seegal RF (2004) PCB-induced inhibition of the vesicular monoamine transporter predicts reductions in synaptosomal dopamine content. Toxicol Sci 80:288–295

    Article  PubMed  CAS  Google Scholar 

  • Bozzi Y, Borrelli E (2006) Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci 29:167–174

    Article  PubMed  CAS  Google Scholar 

  • Carpenter DO, Arcaro K, Spink DC (2002) Understanding the human health effects of chemical mixtures. Environ Health Perspect 110:25–42

    Article  PubMed  CAS  Google Scholar 

  • Castoldi AF, Blandini F, Randine G, Samuele A, Manzo L, Coccini T (2006) Brain monoaminergic neurotransmission parameters in weanling rats after perinatal exposure to methylmercury and 2, 2′, 4, 4′, 5, 5′-hexachlorobiphenyl (PCB153). Brain Res 1112:91–98

    Article  PubMed  CAS  Google Scholar 

  • Castoldi AF, Johansson C, Onishchenko N, Coccini T, Roda E, Vahter M, Ceccatelli S, Manzo L (2008) Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers. Regul Toxicol Pharmacol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Choksi NY, Kodavanti PRS, Tilson HA, Booth RG (1997) Effects of polychlorinated biphenyls (PCBs) on brain tyrosine hydroxylase activity and dopamine synthesis in rats. Fundam Appl Toxicol 39:76–80

    Article  PubMed  CAS  Google Scholar 

  • Chu I, Villeneuve DC, Yagminas A, Lecavalier P, Poon R, Feeley M, Kennedy SW, Seegal RF, Hakansson H, Ahlborg UG, Valli VE, Bergman A (1996) Toxicity of 2, 2′, 4, 4′, 5, 5′-hexachlorobiphenyl in rats: effects following 90-day oral exposure. J Appl Toxicol 16:121–128

    Article  PubMed  CAS  Google Scholar 

  • Coccini T, Randine G, Candura SM, Nappi R, Prockop LD, Manzo L (2000) Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biological monitoring. Environ Health Perspect 108:29–33

    Article  PubMed  CAS  Google Scholar 

  • Coccini T, Randine G, Castoldi AF, Grandjean P, Ostendorp G, Heinzow B, Manzo L (2006a) Effects of developmental co-exposure to methylmercury and 2, 2′, 4, 4′, 5, 5′-hexachlorobiphenyl (PCB153) on cholinergic muscarinic receptors in rat brain. Neurotoxicology 27:468–477

    Article  PubMed  CAS  Google Scholar 

  • Coccini T, Buongiorno A, Roda E, Gralewicz S, Castoldi AF, Felipo V, Manzo L (2006b) Developmental exposure to PCB153 and methylmercury on sex hormone levels at early and late postnatal periods in rats. Toxicol Lett 164S:S167–S168

    Article  Google Scholar 

  • Coccini T, Roda E, Castoldi AF, Goldoni M, Poli D, Bernocchi G, Manzo L (2007) Perinatal co-exposure to methylmercury and PCB153 or PCB126 in rats alters the cerebral cholinergic muscarinic receptors at weaning and puberty. Toxicology 238:34–48

    Article  PubMed  CAS  Google Scholar 

  • Costa LG, Aschner M, Vitalone A, Syversen T, Soldin OP (2004) Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 44:87–110

    Article  PubMed  CAS  Google Scholar 

  • Daré E, Fetissov S, Hokfelt T, Hall H, Ogren SO, Ceccatelli S (2003) Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding. Naunyn Schmiedebergs Arch Pharmacol 367:500–508

    Article  PubMed  Google Scholar 

  • Dreiem A, Shan M, Okoniewski RJ, Sanchez-Morrissey S, Seegal RF (2009) Methylmercury inhibits dopaminergic function in rat pup synaptosomes in an age-dependent manner. Neurotoxicol Teratol 31:312–317

    Article  PubMed  CAS  Google Scholar 

  • Faro LR, Durán R, do Nascimento JL, Alfonso M, Picanco-Diniz CW (1997) Effects of methyl mercury on the in vivo release of dopamine and its acidic metabolites DOPAC and HVA from striatum of rats. Ecotoxicol Environ Saf 38:95–98

    Article  PubMed  CAS  Google Scholar 

  • Faro LR, do Nascimento JL, Alfonso M, Durán R (2002) Mechanism of action of methylmercury on in vivo striatal dopamine release. Possible involvement of dopamine transporter. Neurochem Int 40:455–465

    Article  PubMed  CAS  Google Scholar 

  • Faro LR, Rodrigues KJ, Santana MB, Vidal L, Alfonso M, Durán R (2007) Comparative effects of organic and inorganic mercury on in vivo dopamine release in freely moving rat. Braz J Med Biol Res 40:1361–1365

    Article  PubMed  CAS  Google Scholar 

  • Ferretti C, Blengio M, Vigna I, Ghi P, Genazzani E (1992) Effects of estradiol on the ontogenesisi of striatal dopamine D1 and D2 receptor sites in male and female rats. Brain Res 571:212–217

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacol 31:297–309

    Article  CAS  Google Scholar 

  • Gimenez-Llort L, Ahlbom E, Darè E, Vahter M, Ogren SO, Ceccatelli S (2001) Prenatal exposure to methylmercury changes dopamine-modulated motor activity during early ontogeny: age and gender-dependent effects. Environ. Toxicol Pharmacol 9:61–70

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methyl-mercury. Neurotoxicol Teratol 19:417–428

    Article  PubMed  CAS  Google Scholar 

  • Holene E, Nafstad I, Utne Skaare J, Sagvolden T (1998) Behavioural hyperactivity in rats following postnatal exposure to sub-toxic doses of polychlorinated biphenyl congeners 153 and 126. Behav Brain Res 94:213–224

    Article  PubMed  CAS  Google Scholar 

  • Holene E, Nafstad I, Skaare JU, Krogh H, Sagvolden T (1999) Behavioural effects in female rats of postnatal exposure to sub-toxic doses of polychlorinated biphenyl congener 153. Acta Paediatr Suppl 88:55–63

    Article  PubMed  CAS  Google Scholar 

  • Honma T, Suda M, Miyagawa M, Wang R-S, Kobayashi K, Sekiguchi S (2009) Alteration of brain neurotransmitters in female rat offspring induced by prenatal administration of 16 and 64 mg/kg of 2, 2′, 4, 4′, 5, 5′-hexachlorobiphenyl (PCB153). Ind Health 47:11–21

    Article  PubMed  CAS  Google Scholar 

  • Hussain RJ, Gyori J, DeCaprio AP, Carpenter DO (2000) In vivo and in vitro exposure to PCB 153 reduces long-term potentiation. Environ Health Perspect 108:827–831

    Article  PubMed  CAS  Google Scholar 

  • Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. New Engl J Med 336:783–789

    Article  Google Scholar 

  • Kienast T, Heinz A (2006) Dopamine and the diseased brain. CNS Neurol Disord Drug Targets 5:109–131

    Google Scholar 

  • Longnecker MP, Wolff MS, Gladen BC, Brock JW, Grandjean P, Jacobson JL et al (2003) Comparison of polychlorinated biphenyl levels across studies of human neurodevelopment. Environ Health Perspect 111:65–70

    Article  PubMed  CAS  Google Scholar 

  • Lyng GD, Snyder-Keller A, Seegal RF (2007) Polychlorinated biphenyl–induced neurotoxicity in organotypic cocultures of developing rat ventral mesencephalon and striatum. Toxicol Sci 97:128–139

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Weihe P, Renzoni A, Debes F, Vasconcelos R, Zino F, Araki S, Jorgensen PJ, White RF, Grandjean P (1999) Delayed evoked potentials in children exposed to methylmercury from seafood. Neurotoxicol Teratol 21:343–348

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Reile PA, Langston JL (2004) Gestational exposure to methylmercury retards choice in transition in aging rats. Neurotoxicol Teratol 26:179–194

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Donlin WD, Paletz EM, Banna KM (2006) Developmental behavioral toxicity of methylmercury: Consequences, conditioning, and cortex. In: Levin ED, Buccafusco JJ (eds) Animal models of cognitive impairment. CRC, Boca Raton, pp 101–146

    Google Scholar 

  • Newland WD, Paletz E, Reed MN (2008) Methylmercury and nutrition: adult effects of fetal exposure in experimental models. Neurotoxicology 29:783–801

    Article  PubMed  CAS  Google Scholar 

  • Paletz EM, Craig-Schmidt MC, Newland MC (2006) Gestational exposure to methylmercury and n-3 fatty acids: effects on high- and low-rate operant behavior in adulthood. Neurotoxicol Teratol 28:59–73

    Article  PubMed  CAS  Google Scholar 

  • Paletz EM, Day JJ, Craig-Schmidt MC, Newland MC (2007) Spatial and visual discrimination reversals in adult and geriatric rats exposed during gestation to methylmercury and n—3 polyunsaturated fatty acids. NeuroToxicol 28:707–719

    Article  CAS  Google Scholar 

  • Piedrafita B, Erceg S, Cauli O, Felipo V (2008) Developmental exposure to polychlorinated biphenyls or methylmercury, but not to its combination, impairs the glutamate-nitric oxide-cyclic GMP pathway and learning in 3-month-old rats. Neuroscience 154:1408–1416

    Article  PubMed  CAS  Google Scholar 

  • Poli D, Caglieri A, Goldoni M, Castoldi AF, Coccini T, Roda E, Vitalone A, Ceccatelli S, Mutti A (2009) Single determination of PCB 126 and 153 in rat tissues by using solid phase microextraction/gas chromatography-mass spectrometry: comparison with solid phase extraction and liquid/liquid extraction. J Chromatogr B 877:773–783

    Article  CAS  Google Scholar 

  • Reed MN, Newland MC (2009) Gestational methylmercury exposure selectively increases the sensitivity of operant behavior to cocaine. Behav Neurosci 123:408–417

    Article  PubMed  CAS  Google Scholar 

  • Reed MN, Paletz EM, Newland MC (2006) Gestational exposure to methylmercury and selenium: effects on a spatial discrimination reversal in adulthood. NeuroToxicol 27:721–732

    Article  CAS  Google Scholar 

  • Reed MN, Banna KM, Donlin WD, Newland MC (2008) Effects of gestational exposure to methylmercury and dietary selenium on reinforcement efficacy in adulthood. Neurotoxicol Teratol 30:29–37

    Article  PubMed  CAS  Google Scholar 

  • Rice DC (1996) Evidence for delayed neurotoxicity produced by methylmercury. Neurotoxicology 17:583–596

    PubMed  CAS  Google Scholar 

  • Rice DC, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from human and animal models. Environ Health Perspect 108:511–531

    Article  PubMed  Google Scholar 

  • Roegge CS, Schantz SL (2006) Motor function following developmental exposure to PCBs and/or MeHg. Neurotoxicol Teratol 28:260–277

    Article  PubMed  CAS  Google Scholar 

  • Roegge CS, Wang VC, Powers BE, Klintsova AY, Villareal S, Greenough WT, Schantz SL (2004) Motor impairment in rats exposed to PCBs and methylmercury during early development. Toxicol Sci 77:315–324

    Article  PubMed  CAS  Google Scholar 

  • Rossi AD, Ahlbom E, Ogren SO, Nicotera P, Ceccatelli S (1997) Prenatal exposure to methylmercury alters locomotor activity of male but not female rats. Exp Brain Res 117:428–436

    Article  PubMed  CAS  Google Scholar 

  • Roth-Haerer A, Lilienthal H, Bubser H, Kronthaler U, Mundy WR, Ward TR, Schmodt W, Winterhoff H, Winnecke G (2001) Neurotransmitter concentrations and binding at dopamine receptors in rats after maternal exposure to 3,4,3′,4′,-tetrachlorobiphenyl: the role of reduced thyroid hormone concentrations. Environ Toxicol Pharmacol 9:103–115

    Article  Google Scholar 

  • Rylander L, Stromberg U, Dyremark E, Ostman C, Nilsson-Ehle P, Hagmar L (1998) Polychlorinated biphenyls in blood plasma among Swedish female fish consumers in relation to low birth weight. Am J Epidemiol 147:493–502

    PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  PubMed  CAS  Google Scholar 

  • Schantz SL, Moshtaghian J, Ness DK (1995) Spatial learning deficits in adult rats exposed to ortho-substituted PCB congeners during gestation and lactation. Fund Appl Toxicol 26:117–126

    Article  CAS  Google Scholar 

  • Seegal RF, Okoniewski RJ, Brosch KO, Bemis JC (2002) Polychlorinated biphenyls alter extraneuronal but not tissue dopamine concentrations in adult rat striatum: an in vivo microdialysis study. Environ Health Perspect 110:1113–1117

    Article  PubMed  CAS  Google Scholar 

  • Seegal RF, Marek KL, Seibyl JP, Jennings DL, Molho ES et al (2010) Occupational exposure to PCBs reduces striatal dopamine transporter densities only in women: A β-CIT imaging study. Neurobiol Dis 38:219–225

    Article  PubMed  CAS  Google Scholar 

  • Stewart PW, Lonky E, Reihman J, Pagano J, Gump BB, Darvill T (2008) The Relationship between prenatal PCB exposure and intelligence (IQ) in 9-year-old children. Environ Health Perspect 116:1416–1422

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Higuchi M, Suhara T (2006) The role of extrastriatal dopamine D2 receptors in schizophrenia. Biol Psychiatry 59:919–928

    Article  PubMed  CAS  Google Scholar 

  • Tilson HA, Kodavanti PRS (1997) Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicology 18:727–744

    PubMed  CAS  Google Scholar 

  • Vitalone A, Catalani A, Cinque C, Fattori V, Matteucci P, Zuena AR, Costa LG (2010) Long-term effects of developmental exposure to low doses of PCB 126 and methylmercury. Toxicol Lett 197:38–45

    Article  PubMed  CAS  Google Scholar 

  • Wagner GC, Reuh KR, Ming X, Halladay AK (2007) Behavioral and neurochemical sensitization to amphetamine following early postnatal administration of methylmercury (MeHg). NeuroToxicol 28:59–66

    Article  CAS  Google Scholar 

  • Widholm JJ, Villareal S, Seegal RF, Schantz SL (2004) Spatial alternation deficits following developmental exposure to Aroclor 1254 and/or methylmercury in rats. Toxicol Sci 82:577–589

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptros in prefrontal cortex. Nature 376:572–575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU Grant DEVNERTOX (FOOD-CT-2003-506143) and by grants from the Italian Ministry of Health. The authors wish to acknowledge Mr. Davide Acerbi for his excellent technical assistance.

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Coccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coccini, T., Roda, E., Castoldi, A.F. et al. Developmental exposure to methylmercury and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) affects cerebral dopamine D1-like and D2-like receptors of weanling and pubertal rats. Arch Toxicol 85, 1281–1294 (2011). https://doi.org/10.1007/s00204-011-0660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0660-y

Keywords

Navigation