Skip to main content
Log in

Effect of different buffers on kinetic properties of human acetylcholinesterase and the interaction with organophosphates and oximes

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) is the primary target of organophosphorus compounds (OP). The investigation into interactions between AChE, OP and oximes in vitro may be affected by the experimental conditions, e.g. by the buffer system. Hence, it was tempting to investigate the Michaelis–Menten kinetics and the inhibition and reactivation kinetics of paraoxon-ethyl, sarin, soman and VX in the presence of phosphate, MOPS, Tyrode and TRIS buffer with human AChE. Compared to phosphate buffer, the inhibition and reactivation kinetics of human erythrocyte AChE were markedly changed by TRIS and in part by MOPS, whereas Tyrode showed similar results to phosphate buffer. These results indicate an effect of the tested buffers on the properties of AChE, and an interaction between OP and oximes has to be considered for the design of in vitro studies and may impair the comparison of data from different laboratories. In view of the comparability of human in vitro kinetic data determined with phosphate buffer with data from human OP poisoning, it seems to be a suitable buffer for the investigation into interactions between AChE, OP and oximes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Jafari AA, Kamal MA (1996) Optimization and kinetic studies of human erythrocyte membrane- bound acetylcholinesterase. Biochem Mol Biol Int 38:577–586

    CAS  PubMed  Google Scholar 

  • Aurbek N, Thiermann H, Szinicz L, Eyer P, Worek F (2006) Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase. Toxicology 224:91–99

    Article  CAS  PubMed  Google Scholar 

  • Brestkin AP, Vyaz’menskaya MM, Maizel EB (1978) Influence of Triton X-100 on the properties of acetylcholinesterase from human erythrocytes. Biokhimiia 43:94–99

    CAS  Google Scholar 

  • Chow CM, Islam MF (1970) Colorimetric determination of red blood cell acetylcholinesterase activity. Clin Biochem 3:295–306

    CAS  PubMed  Google Scholar 

  • Davies DR, Green AL (1956) The kinetics of reactivation, by oximes, of cholinesterase inhibited by organophosphorus compounds. Biochem J 63:529–535

    CAS  PubMed  Google Scholar 

  • Dawson RM, Crone HD (1973) Inorganic ion effects on the kinetic parameters of acetylcholinesterase. J Neurochem 21:247–249

    Article  CAS  PubMed  Google Scholar 

  • de Jong LPA, Verhagen AAV, Langenberg JP, Hagedorn I, Löffler M (1989) The bispyridinium-dioxime HLö-7: a potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman. Biochem Pharmacol 38:633–640

    Article  PubMed  Google Scholar 

  • Debord J, Harel M, Verneuil B, Bollinger JC, Dantoine TF (2009) Microcalorimetric study of the inhibition of butyrylcholinesterase by paraoxon. Anal Biochem 389:97–101

    Article  CAS  PubMed  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    Article  CAS  PubMed  Google Scholar 

  • Eddleston M, Karalliedde L, Buckley N, Fernando R, Hutchinson G, Isbister G, Konradsen F, Murray D, Piola JC, Senanayake N, Sheriff R, Singh S, Siwach SB, Smit L (2002) Pesticide poisoning in the developing world—a minimum pesticides list. Lancet 360:1163–1167

    Article  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Anders V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Eyer P (2003) The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev 22:165–190

    Article  CAS  PubMed  Google Scholar 

  • Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E (2003) Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312:224–227

    Article  CAS  PubMed  Google Scholar 

  • Eyer F, Worek F, Eyer P, Felgenhauer N, Haberkorn M, Zilker T, Thiermann H (2009) Obidoxime in acute organophosphate poisoning: 1—clinical effectiveness. Clin Toxicol 47:798–806

    Article  CAS  Google Scholar 

  • Forsberg A, Puu G (1984) Kinetics for the inhibition of acetylcholinesterase from the electric eel by some organophosphates and carbamates. Eur J Biochem 140:153–156

    Article  CAS  PubMed  Google Scholar 

  • Grob D (1956) The manifestations and treatment of poisoning due to nerve gas and other organic phosphate anticholinesterase compounds. Arch Intern Med 98:221–239

    CAS  Google Scholar 

  • Hanke DW, Nelson ME, Baskin SI (1991) Cardiotonic drugs inhibit purified mammalian acetylcholinesterase. J Appl Toxicol 11:119–124

    Article  CAS  PubMed  Google Scholar 

  • Herkert N, Eckert S, Eyer P, Bumm R, Weber G, Thiermann H, Worek F (2008) Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors. Toxicology 246:188–192

    Article  CAS  PubMed  Google Scholar 

  • Kassa J, Cabal J (1999) A comparison of the efficacy of acetylcholinesterase reactivators cyclohexyl methylphosphonofluoridate (GF agent) by in vitro and in vivo methods. Pharmacol Toxicol 84:41–45

    CAS  PubMed  Google Scholar 

  • Keijer JH, Wolring GZ, de Jong LPA (1974) Effect of pH, temperature and ionic strength on the aging of phosphonylated cholinesterases. Biochim Biophys Acta 334:146–155

    CAS  Google Scholar 

  • Kitz RJ, Ginsburg S, Wilson IB (1965) Activity-structure relationships in the reactivation of diethylphosphoryl acetylcholinesterase by phenyl-1-methyl pyridinium ketoximes. Biochem Pharmacol 14:1471–1477

    Article  CAS  PubMed  Google Scholar 

  • Kovarik Z, Calic M, Sinko G, Bosak A, Berend S, Vrdoljak AL, Radic B (2008) Oximes: reactivators of phosphorylated acetylcholinesterase and antidotes in therapy against tabun poisoning. Chem Biol Interact 175:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kuçukkilinç TT, Ozer I (2008) Inhibition of electric eel acetylcholinesterase by triarylmethane dyes. Chem Biol Interact 175:309–311

    Article  PubMed  Google Scholar 

  • Luo C, Tong M, Chilukuri N, Brecht K, Maxwell DM, Saxena A (2007) An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes. Biochemistry 46:11771–11779

    Article  CAS  PubMed  Google Scholar 

  • Mahler HR (1961) The use of amine buffers in studies with enzymes. Ann NY Acad Sci 92:426–439

    Article  CAS  PubMed  Google Scholar 

  • Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  CAS  PubMed  Google Scholar 

  • Mendel B, Rudney H (1945) Some effects of salts on true cholinesterase. Science 102:616–617

    Article  CAS  Google Scholar 

  • Pavlic M (1967) The inhibitory effect of TRIS on the activity of cholinesterases. Biochim Biophys Acta 139:133–137

    CAS  PubMed  Google Scholar 

  • Saxena A, Doctor BP, Maxwell DM, Lenz DE, Radic Z, Taylor P (1993) The role of glutamate-199 in the aging of cholinesterase. Biochem Biophys Res Commun 197:343–349

    Article  CAS  PubMed  Google Scholar 

  • Seeger T, Worek F, Szinicz L, Thiermann H (2007) Reevaluation of indirect field stimulation technique to demonstrate oxime effectiveness in OP-poisoning in muscles in vitro. Toxicology 233:209–213

    Article  CAS  PubMed  Google Scholar 

  • Shih TM (1993) Comparison of several oximes on reactivation of soman-inhibited blood, brain and tissue cholinesterase activity in rats. Arch Toxicol 67:637–646

    Article  CAS  PubMed  Google Scholar 

  • Sidell FR, Takafuji ET, Franz DR (1997) Medical aspects of chemical and biological warfare. Borden Institute, Washington DC

    Google Scholar 

  • Taylor P, Radic Z (1994) The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 34:281–320

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Radic Z, Hosca NA, Camp S, Marchot P, Berman HA (1995) Structural basis for the specificity of cholinesterase catalysis and inhibition. Toxicol Lett 82–83:453–458

    Article  PubMed  Google Scholar 

  • Thiermann H, Szinicz L, Eyer F, Worek F, Eyer P, Felgenhauer N, Zilker T (1999) Modern strategies in therapy of organophosphate poisoning. Toxicol Lett 107:233–239

    Article  CAS  PubMed  Google Scholar 

  • Thiermann H, Szinicz L, Eyer P, Zilker T, Worek F (2005) Correlation between red blood cell acetylcholinesterase activity and neuromuscular transmission in organophosphate poisoning. Chem Biol Interact 157–158:345–347

    Article  PubMed  Google Scholar 

  • Thiermann H, Szinicz L, Eyer P, Felgenhauer N, Zilker T, Worek F (2007) Lessons to be learnt from organophosphorus pesticide poisoning for the treatment of nerve agent poisoning. Toxicology 233:145–154

    Article  CAS  PubMed  Google Scholar 

  • Thiermann H, Worek F, Eyer P, Eyer F, Felgenhauer N, Zilker T (2009) Obidoxime in acute organophosphate poisoning: 2—PK/PD relationships. Clin Toxicol 47:807–813

    Article  CAS  Google Scholar 

  • Worek F, Diepold C, Eyer P (1999a) Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics. Arch Toxicol 73:7–14

    Article  CAS  PubMed  Google Scholar 

  • Worek F, Mast U, Kiderlen D, Diepold C, Eyer P (1999b) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288:73–90

    Article  CAS  PubMed  Google Scholar 

  • Worek F, Reiter G, Eyer P, Szinicz L (2002) Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol 76:523–529

    Article  CAS  PubMed  Google Scholar 

  • Worek F, Thiermann H, Szinicz L, Eyer P (2004) Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem Pharmacol 68:2237–2248

    Article  CAS  PubMed  Google Scholar 

  • Worek F, Koller M, Thiermann H, Szinicz L (2005) Diagnostic aspects of organophosphate poisoning. Toxicology 214:182–189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to T. Hannig and L. Windisch for skillful technical assistance.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Worek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wille, T., Thiermann, H. & Worek, F. Effect of different buffers on kinetic properties of human acetylcholinesterase and the interaction with organophosphates and oximes. Arch Toxicol 85, 193–198 (2011). https://doi.org/10.1007/s00204-010-0578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0578-9

Keywords

Navigation