Skip to main content
Log in

The positive response of Ty1 retrotransposition test to carcinogens is due to increased levels of reactive oxygen species generated by the genotoxins

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In previous laboratory and environmental studies, the Ty1 short-term test showed positive responses (i.e. induced mobility of the Ty1 retrotransposon) to carcinogenic genotoxins. Here, we provide evidence for a causal relationship between increased level of reactive oxygen species and induction the mobility of the Ty1 retrotransposon. Results obtained in concentration and time-dependent experiments after treatment, the tester cells with carcinogenic genotoxins [benzo(a)pyrene, benzo(a)anthracene, ethylmethanesulfonate, formamide], free bile acids (chenodeoxycholic, lithocholic acids) and metals (arsenic, hexavelant chromium, lead) showed a simultaneous increase in both cellular level of the superoxide anions and Ty1 retrotransposition rates. Treatment with the noncarcinogenic genotoxins [benzo(e)pyrene, benzo(b)anthracen, anthracene], conjugated bile acids (taurodeoxycholic, glycodeoxycholic acids) and metals (zinc, trivalent chromium) did not change significantly superoxide anions level and Ty1 retrotransposition rate. The induction by carcinogens of the Ty1 mobility seems to depend on the accumulation of superoxide anions, since the addition of the scavenger N-acetylcysteine resulted in loss of both increased amount of superoxide anions and induced Ty1 retrotransposition. Increased hydrogen peroxide levels are also involved in the induction of Ty1 retrotransposition rates in response to treatment with carcinogenic genotoxins, as evidenced by disruption of YAP1 gene in the tester cells. It is concluded that the carcinogen-induced high level of reactive oxygen species play a primary and key role in determination the selective response of Ty1 test to carcinogenic genotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein H, Bernstein C, Payne CM, Dvorekova K, Garewall H (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589:47–65

    Article  CAS  PubMed  Google Scholar 

  • Bertram JS (2001) The molecular genetics of carcinogenesis. Mol Aspect Med 21:167–223

    Article  Google Scholar 

  • Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812

    Article  CAS  PubMed  Google Scholar 

  • Curcio JM, Garfinkel DG (1991) Single step selection for Ty1 element retrotransposition. Proc Natl Acad Sci USA 88:936–940

    Article  CAS  PubMed  Google Scholar 

  • Dillon CT, Lay PA, Bonin AM, Cholewa M, Legge GJF (2000) Permeability, cytotoxicity and genotoxicity and some Cr(VI) analogues in V79 Chinese Hamster Lung cells. Chem Res Toxicol 13:742–748

    Article  CAS  PubMed  Google Scholar 

  • Donkin SG, Ohlson DL, Teaf CM (2000) Properties and effects of metals. In: Williams PL, James RC, Roberts SM (eds) Principles of toxicology: environmental and industrial applications, 2nd edn. John Wiley, London, pp 325–345

    Google Scholar 

  • Drake JW (1970) The molecular basis of mutation. Holden Day, Oakland

    Google Scholar 

  • Eastmond DA, Macgregor JT, Slesinski RS (2008) Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol 38:173–190

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Liang X, Chen Y, Tang L, Zhang Q, Dong Q (2008) Oxidative stress as a component of chromium-induced cytotoxicity in rat calvarial osteoblasts. Cell Biol Toxicol 24:201–212

    Article  CAS  PubMed  Google Scholar 

  • Garfinkel D (1992) Retroelements in microorganisms. In: Levy JA (ed) Retroviritidae. Plenum Press, New York, pp 107–136

    Google Scholar 

  • Gitan M, Shababi M, Kramer M, Eide DJ (2003) A cytosolic domain of the yeast Ztr1 zinc transporter is required for its post translational inactivation in response to zinc and cadmium. J Biol Chem 278:39558–39564

    Article  CAS  PubMed  Google Scholar 

  • Herrero E, Ros J, Belli G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235

    CAS  PubMed  Google Scholar 

  • Hsu P, Liu M, Hsu C, Chen L, Leon Guo Y (1997) Lead exposure causes generation of reactive oxygen species and functional impairment in rat sperm. Toxicology 122:133–143

    Article  CAS  PubMed  Google Scholar 

  • Hsu P, Liu M, Hsu C, Chen L, Leon Guo Y (1998) Effect of vitamin E and/or C on reactive oxygen species-related lead toxicity in the rat sperm. Toxicology 128:169–179

    Article  CAS  PubMed  Google Scholar 

  • Hu H (2002) Human health and heavy metal exposure. In: McCally M (ed) Life support: the environment and human health. Chap. 4. MIT press, Cambridge

    Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681

    CAS  PubMed  Google Scholar 

  • Jianglong W, Zeyu M, Xuan Z (2003) Response of Saccharomyces cerevisiae to chromium stress. Proc Biochem 39:1231–1235

    Article  CAS  Google Scholar 

  • Jung WW, Kim EM, Lee EH, Yun HJ, Ju HR, Jeong MJ, Hwang KW, Sul D, Kang HS (2007) Formaldehyde exposure induces airway inflammations by increasing eosinophil infiltrations through the regulation of reactive oxygen species production. Envir Tox Pharm 24:174–182

    Article  CAS  Google Scholar 

  • Kim JM, Vanguri S, Bocke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    CAS  PubMed  Google Scholar 

  • Lawrence CW, Hinkle DC (1996) DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv 28:21–31

    CAS  PubMed  Google Scholar 

  • Lessage P, Todeschini AZ (2005) Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 110:70–90

    Article  CAS  Google Scholar 

  • Levina A, Lay PA (2008) Chemical properties and toxicity of chromium (III) nutritional supplements. Chem Res Toxicol 21:563–571

    Article  CAS  PubMed  Google Scholar 

  • Maron DM, Ames B (1983) Revised methods for the Salmonella mutagenicity tests. Mutat Res 113:173–215

    CAS  PubMed  Google Scholar 

  • Morrilon A, Springer M, Lesage P (2000) Activation of the kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 20:5766–5776

    Article  Google Scholar 

  • Nguyen DT, Alarco AM, Raymond M (2001) Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants and alkylating agent. J Biol Chem 276:1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Nyswaner KM, Checkley MA, Yi M, Stephens RM, Garfinkel DG (2008) Chromatin associated genes protect the yeast genome from Ty1 insertional mutagenesis. Genetics 178:197–214

    Article  CAS  PubMed  Google Scholar 

  • Paquin CE, Williamson VM (1984) Temperature effect on the role of Ty1 transposition. Science 226:53–55

    Article  CAS  PubMed  Google Scholar 

  • Paquin CE, Williamson VM (1986) Ty insertions at two loci account for most of the spontaneous antimycinA resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1. Mol Cell Biol 6:70–79

    CAS  PubMed  Google Scholar 

  • Pesheva M, Krastanova O, Staleva L, Hadzhitodorov M, Venkov P (2005) The Ty1 transposition assay: a new short-term test for detection of carcinogens. J Microbiol Methods 61:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pesheva M, Krastanova O, Stamenova R, Kantardjiev D, Venkov P (2008) The response of Ty1 test to genotoxins. Arch Toxicol 82:779–785

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Gabrial MA, Russel P (2005) Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe. Eukatyotic Cell 4:1369–1402

    Google Scholar 

  • Rudolf E, Cervinka M (2003) Chromium (III) produces distinct type of cell death in cultured cells. Acta Medica 46:139–146

    CAS  PubMed  Google Scholar 

  • Sacerdot C, Mercier G, Todeschini AL, Dutreix M, Springer M, Lesage P (2005) Impact of ionizing radiation on the life cycle of Saccharomyces cerevisiae Ty1 retrotransposition. Yeast 22:441–455

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Nishiok K, Yoshida Y, Niki E (2005) Cytotoxic effect of formaldehyde with free radicals via increment of cellular reactive oxygen species. Toxicology 210:235–245

    Article  CAS  PubMed  Google Scholar 

  • Salomon TB, Evert BA, Song B, Doetsch PW (2004) Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res 32:3712–3722

    Article  CAS  Google Scholar 

  • Sankavarum K, Grattan BJ, Walker R, Park HJ, Freake HC (2009) Effects of altered zinc availability on proliferation and oxidative stress in cultured cells. FASEB J 23:216.2

    Google Scholar 

  • Scandalious JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Google Scholar 

  • Sherman F, Fink GR, Hicks GB (2001) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Staleva L, Venkov P (2001) Activation of Ty1 transposition by mutagens. Mutat Res 474:93–103

    Google Scholar 

  • Stamenova R, Dimitrov M, Stoycheva T, Pesheva M, Venkov P, Ts Tsvetkov (2008) Transposition of Saccharomyces cerevisiae Ty1 retrotransposon is activated by improper cryopreservation. Cryobiology 56:241–247

    Article  CAS  PubMed  Google Scholar 

  • Stephan DW, Rivers SL, Jameson DJ (1995) The role of YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol 16:415–423

    Article  Google Scholar 

  • Stoycheva T, Massarado DR, Pesheva M, Venkov P, Wolf K, Giudice L, Pontieri P (2007) Ty1 transposition induced by carcinogens in Saccharomyces cerevisiae yeast depends on mitochondrial function. Gene 389:212–218

    Article  CAS  PubMed  Google Scholar 

  • Sutherland MW, Learmont BA (1997) The tetrazolium dyes MTS and XTT provide new quantitative assay for superoxide and superoxide dismutase. Free Rad Res 27:283–289

    Article  CAS  Google Scholar 

  • Tirmenstein MA, Nicolls-Cremski FA, Zhang JG, Fariss MW (2000) Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. Chem Biol Interact. 127:201–217

    Article  CAS  PubMed  Google Scholar 

  • Todeschini AL, Morillon A, Springer M, Lesage P (2005) Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 25:7459–7472

    Article  CAS  PubMed  Google Scholar 

  • Toyooka T, Ibuki Y (2007) DNA damage induced by coexposure to PAHs and light. Envir Tox Pharm 23:256–263

    Article  CAS  Google Scholar 

  • Tucker CL, Fields S (2004) Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp Funct Genomics 5:216–224

    Article  CAS  PubMed  Google Scholar 

  • YARC (1990) Monographs of the evaluation of carcinogenic risks to humans, vol 49. IARC Scientific Publications, YARC, Lyon

    Google Scholar 

  • Zbigniev T, Wojciech P (2006) Individual and combined effect of anthracene, cadmium and chloridazone on growth and activity of SOD izoforms in three Scenedesmus species. Ecotox Environ Safety 65:323–331

    Article  CAS  Google Scholar 

  • Zhang JG, Nicholls-Crzemski FA, Trimenstein MA, Fariss MW (2001) Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complexes I and III by alkylating agents. Chem Biol Interact. 138:267–284

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Onda K, Imai R, Fukuda R, Horiuchi H, Ohta A (2003) Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 307:308–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported partly by a grant of the NATO SfP project 977977 given to Pencho Venkov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Pesheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrov, M., Venkov, P. & Pesheva, M. The positive response of Ty1 retrotransposition test to carcinogens is due to increased levels of reactive oxygen species generated by the genotoxins. Arch Toxicol 85, 67–74 (2011). https://doi.org/10.1007/s00204-010-0542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0542-8

Keywords

Navigation