Skip to main content

Advertisement

Log in

Curcumin attenuates indomethacin-induced oxidative stress and mitochondrial dysfunction

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of indomethacin-induced enteropathy. We evaluated the potential of curcumin, a known cytoprotectant, as an agent to protect against such effects. Rats were pretreated with curcumin (40 mg/kg by intra-peritoneal injection) before administration of indomethacin (20 mg/kg by gavage). One hour later, the small intestine was isolated and used for assessment of parameters of oxidative stress. Mitochondria, brush border membranes (BBM) and surfactant-like particles (SLP) were also isolated from the tissue. Mitochondria were used for assessment of functional integrity, estimation of products of lipid peroxidation and lipid content. BBM were used for estimation of products of lipid peroxidation and lipid content, while the SLP were used for measurement of lipid content. The results showed that oxidative stress and mitochondrial dysfunction occurred in the small intestine of indomethacin-treated rats. Pre-treatment with curcumin was found to ameliorate these drug-induced changes. Significant changes were seen in some of the lipids in the mitochondria, BBM and SLP in response to indomethacin. However, curcumin did not have any significant effect on these drug-induced changes. We conclude that curcumin, by attenuating oxidative stress and mitochondrial dysfunction, holds promise as an agent that can potentially reduce NSAID-induced adverse effects in the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BBM:

Brush border membranes

MDA:

Malondialdehyde

MTT:

3-[4,5-Dimethylthiazol-2-yll]-2,5-diphenyltetrazolium bromide

NSAIDs:

Non-steroidal anti-inflammatory drugs

RCR:

Respiratory control ratio

SLP:

Surfactant-like particle

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  • Awasthi YC, Dao DD, Saneto RP (1980) Interrelationship between anionic and cationic forms of glutathione S-transferases of human liver. Biochem J 191:1–10

    PubMed  CAS  Google Scholar 

  • Bartlett GR (1959) Phosphorous assay in column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  • Basivireddy J, Vasudevan A, Jacob M, Balasubramanian KA (2002) Indomethacin-induced mitochondrial dysfunction and oxidative stress in villus enterocytes. Biochem Pharmacol 64:339–349

    Article  PubMed  CAS  Google Scholar 

  • Basivireddy J, Jacob M, Balasubramanian KA (2005) Indomethacin induces free radical-mediated changes in renal brush border membranes. Arch Toxicol 79(8):441–445

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Scan J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Brasitus TA, Schachter D (1984) Lipid composition and fluidity of rat enterocyte basolateral membranes. Regional differences. Biochim Biophys Acta 774:138–146

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Jankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378:776–779

    Article  PubMed  CAS  Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    Article  PubMed  CAS  Google Scholar 

  • Chan HW, Levett G (1972) Auto oxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxy linoleates. Lipids 12:99–104

    Article  Google Scholar 

  • Cohen P, Derksen A (1969) Comparison of phospholipid and fatty acid composition of human erythrocytes and platelets. Br J Haematol 17:359–371

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (1999) Relation of structure of curcumin analogs to their potencies as inducers of phase 2 detoxification enzymes. Carcinogenesis 20:911–914

    Article  PubMed  CAS  Google Scholar 

  • Eliakim R, DeSchryver-kecskemeti K, Nogee L, Stenson WF, Alpers DH (1989) Isolation and characterization of a small intestinal surfactant-like particle containing alkaline phosphatase and other digestive enzymes. J Biol Chem 264:20614–20619

    PubMed  CAS  Google Scholar 

  • Ettarh RR, Carr KE (1993) Structural and morphometric analysis of murine small intestine after indomethacin administration. Scand J Gastroenterol 28(9):795–802

    Article  PubMed  CAS  Google Scholar 

  • Fortun PJ, Hawkey CJ (2005) Nonsteroidal antiinflammatory drugs and the small intestine. Cur Opin Gastroenterol 21:169–175

    Article  CAS  Google Scholar 

  • Gabriel SE, Jaakkimainen L, Bombardier C (1999) Risk for serious gastro-intestinal complications related to use of nonsteroidal anti-inflammatory drugs: a meta-analysis. Ann Int Med 115:787–796

    Google Scholar 

  • Habeeb AFSA (1972) Reaction of protein sulfhydryl groups with Ellman’s reagent. Methods Enzymol 34:457–464

    Article  Google Scholar 

  • Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S (2003) Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protecting against chemical carcinogenesis and toxicity. Pharmacol Toxicol 92:33–38

    Article  PubMed  CAS  Google Scholar 

  • Jacob M, Foster R, Sigthorsson G, Simpson R, Bjarnason I (2007) Role of bile in pathogenesis of indomethacin-induced enteropathy. Arch Toxicol 81:291–298

    Article  PubMed  CAS  Google Scholar 

  • Joe B, Lokesh BR (1994) Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224(2):255–263

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Nishio H, Ogura M, Takeuchi K, Tacrolimus (2007) (FK506), an immunosuppressive agent, prevents indomethacin-induced small intestinal ulceration in the rat: inhibition of inducible nitric oxide synthase expression. J Pharmacol Sci 103:40–47

    Article  PubMed  CAS  Google Scholar 

  • Kluth D, Banning A, Paur I, Blomhoff R, Brigelius-Flohe R (2007) Modulation of pregnane X receptor and electrophile responsive element-mediated gene expression by dietary polyphenolic compounds. Free Radic Biol Med 42(3):315–25

    Article  PubMed  CAS  Google Scholar 

  • Kraswisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Gastroenterology 87:1344–1350

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Madesh M, Bhaskar L, Balasubramanian KA (1997) Enterocyte viability and mitochondrial function after graded intestinal ischaemia and reperfusion in rat. Mol Cell Biochem 167:81–87

    Article  PubMed  CAS  Google Scholar 

  • Madesh M, Anup R, Balasubramanian KA (1999) Nitric oxide prevents anoxia-induced apoptosis in colonic HT29 cells. Arch Biochem Biophys 366:240–248

    Article  PubMed  CAS  Google Scholar 

  • Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    Article  PubMed  CAS  Google Scholar 

  • Masola B, Evered DF (1984) Preparation of rat enterocyte mitochondria. Biochem J 218:441

    PubMed  CAS  Google Scholar 

  • Miura S, Suematsu M, Tanaka S, Nagata H, Houzawa S, Sduzuki M, Kurose I, Serizawa H, Tsuchiya M (1991) Microcirculatory disturbance in indomethacin-induced intestinal ulcer. Am J Physiol 261:g213–g219

    PubMed  CAS  Google Scholar 

  • Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MM (2007) Mitochondrial cComplex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 3:399–408

    Google Scholar 

  • Nagano Y, Matsui H, Muramatsu M, Shimokawa O, Shibahara T, Yanaka A, Nakahara A, Matsuzaki Y, Tanaka N, Nakamura Y (2005) Rebamipide significantly inhibits indomethacin-induced mitochondrial damage, lipid peroxidation, and apoptosis in gastric epithelial RGM-1 cells. Dig Dis Sci 50(Suppl1):S76–S83

    Article  PubMed  CAS  Google Scholar 

  • Nakamura W, Hosada S, Hayashi K (1974) Purification and properties of rat liver glutathione peroxidase. Biochem Biophys Acta 358:251–261

    CAS  Google Scholar 

  • Ohkawn JP, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  Google Scholar 

  • Parks DA, William TK, Beckman JS (1998) Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a re-evaluation. Am J Physiol 254:G768–G774

    Google Scholar 

  • Prabhu R, Balasubramanian KA (2001) A novel method of preparation of small intestinal brush border membrane vesicles by poly ethylene glycol precipitation. Anal Biochem 289:157–161

    Article  PubMed  CAS  Google Scholar 

  • Racker E (1955) Glutathione reductase (liver and yeast). Methods Enzymol 2:722–725

    Article  Google Scholar 

  • Reddy AC, Lokesh BR (1994) Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous ion. Mol Cell Biochem 137:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Antitumor and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83

    Article  PubMed  CAS  Google Scholar 

  • Scarpa A (1979) Measurement of cation transport with metallochromic indicators. Methods Enzymol 56:301

    PubMed  CAS  Google Scholar 

  • Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem 270:24995–25000

    Article  PubMed  CAS  Google Scholar 

  • Sivalingam N, Hanumantharaya R, Faith M, Basivireddy J, Balasubramanian, KA, Jacob M (2007) Curcumin reduces indomethacin-induced damage in the rat small intestine. J Appl Toxicol 27(6):551–560

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal S, Dubey A, Orr WC (1993) Protein oxidative damage is associated with life expectancy of houseflies. PNAS 90:7255–7259

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram S, Rafi S, Hayllar J, Sigthorsson G, Jacob M, Price AB, Macpherson A, Mahmod T, Scott D, Wrigglesworth JM, Bjarnason I (1997) Mitochondrial damage: a possible mechanism of the “topical” phase of NSAID-induced injury to the rat intestine. Gut 41:344–353

    Article  PubMed  CAS  Google Scholar 

  • Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP (2007) Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 30(1):74–78

    Article  PubMed  CAS  Google Scholar 

  • Song EK, Cho H, Kim JS, Kim NY, An NH, Kim JA, Lee SH, Kim YC (2001) Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from curcuma longa. Planta Med 67:876–877

    Article  PubMed  CAS  Google Scholar 

  • Swarnakar S, Ganguly K, Kundu P, Banerjee A, Maity P, Sharma AV (2005) Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 280(10):9409–9415

    Article  PubMed  CAS  Google Scholar 

  • Synder F, Stephens N (1959) A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta 34:244–245

    Article  Google Scholar 

  • Takeyama N, Matsuo N, Tanaka T (1993) Oxidative damage to mitochondria is mediated by the Ca2+ dependent inner membrane permeability transition. Biochem J 294:719

    PubMed  CAS  Google Scholar 

  • Thambidurai D, Bachawat BK (1977) Purification and properties of brain alkaline phosphatase. J Neurochem 29:503–512

    Article  Google Scholar 

  • Thiefin G, Beaugerie L (2005) Toxic effects of nonsteroidal anti-inflammatory drugs on the small bowel, colon, and rectum. Joint Bone Spine 72:286–294

    Article  PubMed  Google Scholar 

  • Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74:969–985

    Article  PubMed  CAS  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin like drugs. Nat New Biol 231:232–235

    PubMed  CAS  Google Scholar 

  • Watford M, Lund P, Krebs HA (1979) Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J 178:589–596

    PubMed  CAS  Google Scholar 

  • Wei QY, Chen WF, Zhou B, Yang L, Liu ZL (2006) Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta 1760(1):70–77

    PubMed  CAS  Google Scholar 

  • Zlatkis A, Zak B, Boyle AJ (1953) A new method for the direct determination of serum cholesterol. J Lab Clin Med 41:486–492

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Council for Scientific and Industrial Research (CSIR), New Delhi, India (grant no. 37/1182/04 EMRII) for financial assistance for the study. Both Jayasree Basivireddy and Nageswaran Sivalingam were Senior Research Fellows funded by the CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivalingam, N., Basivireddy, J., Balasubramanian, K.A. et al. Curcumin attenuates indomethacin-induced oxidative stress and mitochondrial dysfunction. Arch Toxicol 82, 471–481 (2008). https://doi.org/10.1007/s00204-007-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0263-9

Keywords

Navigation