Skip to main content

Advertisement

Log in

Human experimental exposure study on the uptake and urinary elimination of N-methyl-2-pyrrolidone (NMP) during simulated workplace conditions

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A human experimental study was carried out with 16 volunteers to examine the elimination of N-methyl-2-pyrrolidone (NMP) after exposure to the solvent under simulated workplace conditions. The NMP concentrations were 10, 40 and 80 mg/m3 for 2 × 4 h with an exposure-free interval of 30 min. Additionally, a peak exposure scenario (25 mg/m3 baseline, 160 mg/m3 peaks for 4 × 15 min, time-weighted average: 72 mg/m3) was tested. The influence of physical activity on the uptake and elimination of NMP was studied under otherwise identical exposure conditions but involving moderate workload on a bicycle ergometer (75 W for 6 × 10 min). The peak times and biological half-lives of urinary NMP and its main metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) in urine were analysed as well as the interrelationships between exposure and biomarkers. All analytes showed a close correlation between their post-shift peak concentrations and airborne NMP. An exposure to the current German workplace limit value of 80 mg/m3 under resting conditions resulted in urinary peak concentrations of 2,400 μg/L NMP, 117 mg/g creatinine 5-HNMP and 32 mg/g creatinine 2-HMSI (workload conditions: 3,400 μg/L NMP, 150 mg/g creatinine 5-HNMP, 44 mg/g creatinine 2-HMSI). Moderate workload enhanced the total uptake of NMP by approximately one third. Differences between the estimated and the observed total amount of urinary metabolites point to a significant contribution of dermal absorption on the uptake of NMP. This aspect, together with the influence of physical workload, should be considered for the evaluation of a biological limit value for NMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Åkesson B (2001) N-Methyl-2-pyrrolidone. Concise international chemical assessment document 35, International programme on chemical safety, World Health Organization, Geneva

  • Åkesson B, Carnerup M, Jönsson BAG (2004) Evaluation of exposure biomarkers from percutaneous absorption of N-methyl-2-pyrrolidone. Scand J Work Environ Health 30:306–312

    PubMed  Google Scholar 

  • Åkesson B, Jönsson BAG (1997) Major metabolic pathway for N-methyl-2-pyrrolidone in humans. Drug Metab Dispos 25:267–269

    PubMed  Google Scholar 

  • Åkesson B, Jönsson BAG (2000) Biological monitoring of N-methyl-2-pyrrolidone using 5-hydroxy-N-methyl-2-pyrrolidone in plasma and urine as the biomarker. Scand J Work Environ Health 26:213–218

    PubMed  Google Scholar 

  • Åkesson B, Paulsson K (1997) Experimental exposure of male volunteers to N-methyl-2-pyrrolidone (NMP): acute effects and pharmacokinetics of NMP in plasma and urine. Occup Environ Med 54:236–240

    Article  PubMed  Google Scholar 

  • Akrill P, Cocker J, Dixon S (2002) Dermal exposure to aqueous solutions of N-methylpyrrolidone. Toxicol Lett 134:265–269

    Article  PubMed  CAS  Google Scholar 

  • Anundi H, Langworth S, Johanson G, Lind ML, Åkesson B, Friis L, Itkes N, Söderman E, Jönsson BAG, Edling C (2000) Air and biological monitoring of solvent exposure during graffiti removal. Int Arch Occup Environ Health 73:561–569

    Article  PubMed  CAS  Google Scholar 

  • Anundi H, Lind ML, Friis L, Itkes N, Langworth S, Edling C (1993) High exposures to organic solvents among graffiti removers. Int Arch Occup Environ Health 65:247–251

    Article  PubMed  CAS  Google Scholar 

  • Bader M, Keener SA, Wrbitzky R (2005) Dermal absorption and urinary elimination of N-methyl-2-pyrrolidone. Int Arch Occup Environ Health 78:673–676

    Article  PubMed  CAS  Google Scholar 

  • Bader M, Rosenberger W, Rebe Th, Keener S, Brock TH, Hemmerling H, Wrbitzky R (2006) Ambient monitoring and biomonitoring of workers exposed to N-methyl-2-pyrrolidone (NMP) in an industrial facility. Int Arch Occup Environ Health 79:357–364

    Article  PubMed  CAS  Google Scholar 

  • Bader M, Will W, Rossbacher R, Nasterlack M, Wrbitzky R (2002) N-Methyl-2-pyrrolidon - Arbeitsmedizinische Bedeutung und Toxikologie. Arbeitsmed Sozialmed Umweltmed 9:422–428

    Google Scholar 

  • Beaulieu HJ, Schmerber KR (1991) M-Pyrol(TM) (NMP) use in the microelectronics industry. Appl Occup Environ Hyg 6:874–880

    CAS  Google Scholar 

  • Carnerup MA (2004) Analysis, metabolism, effects and biological monitoring of N-methyl-2-pyrrolidone (NMP). Thesis, Faculty of Medicine, Lund University, Sweden

  • Carnerup MA, Spanne M, Jönsson BA (2006) Levels of N-methyl-2-pyrrolidone (NMP) and its metabolites in plasma and urine from volunteers after experimental exposure to NMP in dry and humid air. Toxicol Lett 162:139–45

    Article  PubMed  CAS  Google Scholar 

  • DFG (Deutsche Forschungsgemeinschaft) (2006) List of MAK and BAT values 2006. Report No. 42, Wiley-VCH, Weinheim

  • Greim H (ed.) (2006) N-Methyl-2-pyrrolidon (Dampf). Maximale Arbeitsplatzkonzentrationen. Arbeitsmedizinisch-toxikologische Begründungen. Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. Deutsche Forschungsgemeinschaft. 41. Lieferung, Wiley-VCH, Weinheim

  • Greim H, Lehnert G (eds.) (1998) Die Bedeutung der Arbeitsleistung für die Inhalationskinetik. Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten, Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. Deutsche Forschungsgemeinschaft. 27. Lieferung, Wiley-VCH, Weinheim

  • HSE (Health and Safety Executive) (1997) N-Methyl-2-pyrrolidone. Risk assessment document. EH72/10, ISBN 0717615286, HSE Books, Sudbury, UK

  • Jönsson BAG, Åkesson B (1997) Determination of 5-hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide in human urine. J Chrom B 694:351–357

    Article  Google Scholar 

  • Jönsson BAG, Åkesson B (2003) Human experimental exposure to N-methyl-2-pyrrolidone (NMP): toxicokinetics of NMP, 5-hydroxy-N-methyl-2-pyrrolidone, N-methylsuccinimide and 2-hydroxy-N-methylsuccinimide (2-HMSI) and biological monitoring using 2-HMSI as a biomarker. Int Arch Occup Environ Health 76:267–274

    PubMed  Google Scholar 

  • Langworth S, Anundi H, Friis L, Johanson G, Lind ML, Söderman E, Åkesson B (2001) Acute health effects common during graffiti removal. Int Arch Occup Environ Health 74:213–218

    Article  PubMed  CAS  Google Scholar 

  • Ligocka D, Lison D, Haufroid V (2003) Contribution of CYP2E1 to N-methyl-2-pyrrolidone metabolism. Arch Toxicol 77:261–266

    PubMed  CAS  Google Scholar 

  • Midgley I, Hood AJ, Chasseaud LF, Brindley CJ, Baughman S, Allan G (1992) Percutaneous absorption of co-administered N-methyl-2-[14C]pyrrolidinone and 2-[14C]pyrrolidinone in the rat. Food Chem Toxic 30:57–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the participating laboratory and scientific staffs of IfADo and MHH for their excellent technical assistance. This study was financially supported by grants of the NMP Producers Group, c/o Bergeson & Campbell, Washington DC, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, M., Wrbitzky, R., Blaszkewicz, M. et al. Human experimental exposure study on the uptake and urinary elimination of N-methyl-2-pyrrolidone (NMP) during simulated workplace conditions. Arch Toxicol 81, 335–346 (2007). https://doi.org/10.1007/s00204-006-0161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-006-0161-6

Keywords

Navigation