Skip to main content

Advertisement

Log in

Heat shock protein 70 in the rat nasal cavity: localisation and response to hyperthermia

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Heat shock proteins (HSPs) are a group of proteins that are rapidly induced in response to physiological stress, including hyperthermia and exposure to toxicants. Thus they may provide a useful index of toxicity in in vitro systems for screening for toxicity. We have recently developed a rat nasal explant system for investigating upper respiratory tract toxicity, and the aims of this study were to localise HSP70 within the rat nasal cavity and to characterise its response to hyperthermia. Constitutively, HSP70 was found to be predominantly localised to the sustentacular cells, basal cells and Bowman’s glands of the olfactory epithelium (OE), with the most intense immunohistochemical staining at levels 3 and 4 of the posterior of the rat nasal cavity. Ethmoturbinates (ETs) and liver slices were exposed to heat shock (37° and 43°C, respectively) for 45 min and then returned to normal culture temperatures (31° and 37°C, respectively) for 24 h. In ETs, HSP72 was maximally induced 4-fold at 4 h after heat shock, and levels then returned to those of control tissue. ATP concentrations were markedly decreased up to 4 h after heat shock and then returned to control levels. In contrast, HSP72 levels in liver slices increased and ATP levels decreased steadily throughout the 24 h culture period. ETs were also able to withstand a 45-min heat shock at 43°C, that is 12°C above normal culture temperature. Incubation of ETs with cycloheximide prior to heat shock reduced the ability of the OE to recover from heat shock at 37°C. Thus the OE of the rat nasal cavity expresses HSP72, and this protein appears to play an important role in the ability of the tissue to withstand hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–c
Fig. 5a–c
Fig. 6a,b

Similar content being viewed by others

References

  • Banger KK, Foster JR, Lock EA, Reed CJ (1994) Immunohistochemical localisation of six glutathione S-transferases within the nasal cavity of the rat. Arch Toxicol 69:91–98

    Article  CAS  PubMed  Google Scholar 

  • Bascom R, Kesavanathan J, Fitzgerald TK, Cheng KH, Swift DL (1995) Sidestream tobacco smoke exposure acutely alters human nasal mucociliary clearance. Environ Health Perspect 103:1026–1030

    Google Scholar 

  • Brandt I, Brittebo EB, Feil VJ, Bakke JE (1990) Irreversible binding and toxicity of the herbicide dichlobenil (2,6-dichlorobenzonitrile) in the olfactory mucosa of mice. Toxicol Appl Pharmacol 103:491–501

    CAS  PubMed  Google Scholar 

  • Calabrese V, Renis M, Calderone A, Russo A, Reale S, Barcellona ML, Rizza V (1998) Stress proteins and SH-groups in oxidant-induced cellular injury after chronic ethanol administration in rat. Free Radic Biol Med 24:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Carr VM, Farbman AI (1993a) Effect of ketamine on stress protein immunoreactivities in rat olfactory mucosa. Neuroreport 5:197–200

    CAS  PubMed  Google Scholar 

  • Carr VM, Farbman AI (1993b) The dynamics of cell death in the olfactory epithelium. Exp Neurol 124:308–314

    Google Scholar 

  • Carr VM, Murphy SP, Morimoto RI, Farbman AI (1994) Small subclass of rat olfactory neurons with specific bulbar projections is reactive with monoclonal antibodies to HSP70 heat shock protein. J Comp Neurol 348:150–160

    CAS  PubMed  Google Scholar 

  • De Maio A, Beck SC, Buchman TG (1993) Induction of translational thermotolerance in liver of thermally stressed rats. Eur J Biochem 218:413–420

    PubMed  Google Scholar 

  • de Pomerai D (1996) Heat shock proteins as biomarkers of pollution. Hum Exp Toxicol 15:279–285

    PubMed  Google Scholar 

  • Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderon-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177:132–148

    Article  PubMed  Google Scholar 

  • Dwyer BE, Nishimura RN, Brown IR (1989) Synthesis of the major inducible heat shock protein in rat hippocampus after neonatal hypoxia-ischemia. Exp Neurol 104:28–31

    CAS  PubMed  Google Scholar 

  • Feron VJ, Arts JH, Kuper CF, Slootweg PJ, Woutersen RA (2001) Health risks associated with inhaled nasal toxicants. Crit Rev Toxicol 31:313–347

    CAS  PubMed  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    CAS  PubMed  Google Scholar 

  • Fujimori S, Otaka M, Otani S, Jin M, Okuuyama A, Itoh S, Iwabuchi A, Sasahari H, Itoh H, Tashoma Y, Komatsu M, Masamune O (1997) Induction of a 72-kDa heat shock protein and cytoprotection against thioacetamide-induced liver injury in rats. Dig Dis Sci 42:1987–1994

    CAS  PubMed  Google Scholar 

  • Gaskell BA, Hext PM, Pigott GH, Hodge MCH, Tinston DJ (1988) Olfactory and hepatic changes following inhalation of 3-trifluoromethyl pyridine in rats. Toxicology 50:57–68

    Article  CAS  PubMed  Google Scholar 

  • Getchell ML, Krishna NS, Sparks DL, Dhooper N (1995) Human olfactory receptor neurons express heat shock protein 70: age-related trends. Ann Otol Rhinol Laryngol 104:47–56

    CAS  PubMed  Google Scholar 

  • Goering PL, Fisher BR, Noren BT, Papaconstantinou A, Rojko JL, Marler RJ (2000) Mercury induces regional and cell-specific stress protein expression in rat kidney. Toxicol Sci 53:447–457

    CAS  PubMed  Google Scholar 

  • Hart SGE, Cartun RW, Wyand DS, Khairallah EA, Cohen SD (1995) Immunohistochemical localization of acetaminophen in target tissues of the CD-1 mouse: correspondence of covalent binding with toxicity. Fundam Appl Toxicol 24:260–274

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    CAS  PubMed  Google Scholar 

  • Iwaki K, Chi SH, Dilmann WH, Mestril R (1993) Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation 87:2023–2032

    CAS  PubMed  Google Scholar 

  • Johansson SL (1981) Carcinogenicity of analgesics: Long-term treatment of Sprague-Dawley rats with phenacetin, phenazone, caffeine and paracetamol (acetamidophen). Int J Cancer 27:521–529

    CAS  PubMed  Google Scholar 

  • Johnson NF, Hotchkiss JA, Harkema JR, Henderson RF (1990) Proliferative responses of rat nasal epithelia to ozone. Toxicol Appl Pharmacol 103:143–155

    CAS  PubMed  Google Scholar 

  • Kato K, Ito H, Kamei K, Iwamoto I (1998) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chaperones 3:152–160

    CAS  PubMed  Google Scholar 

  • Keenan CM, Kelly DP, Bogdanffy MS (1990) Degeneration and recovery of rat olfactory epithelium following inhalation of dibasic esters. Fundam Appl Toxicol 15:381–393

    CAS  PubMed  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    CAS  PubMed  Google Scholar 

  • Kilgour JD, Alexander DJ, Reed CJ (1998a) Development of an in vitro rat nasal epithelial model for predicting upper respiratory tract toxicity. Toxicol Methods 8:301–317

    Article  CAS  Google Scholar 

  • Kilgour JD, Alexander DJ, Reed CJ (1998b) Maintenance of xenobiotic biotransformation in an in vitro model of the rat nasal cavity. In Vitro Mol Toxicol 11:255–264

    CAS  Google Scholar 

  • Kilgour JD, Simpson SA, Alexander DJ, Reed CJ (1999) A rat nasal epithelial model for predicting upper respiratory tract toxicity: in vivo-in vitro correlations. Toxicology 145:39–49

    Article  Google Scholar 

  • Kimbell JS, Godo MN, Gross EA, Joyner DR, Richardson RB, Morgan KT (1997) Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Toxicol Appl Pharmacol 145:388–398

    Article  CAS  PubMed  Google Scholar 

  • Komatsuda A, Wakui H, Satoh K, Yasuda T, Imai H, Nakamoto Y, Miura AB, Itoh H, Tashima Y (1993) Altered localisation of 73-kilodalton heat-shock protein in rat kidneys with gentamicin-induced acute tubular injury. Lab Invest 68:687–695

    CAS  PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    CAS  PubMed  Google Scholar 

  • Kubo S, Tokunaga I, Yamamoto A, Gotohda T, Morita K (1999) Relevance of heat-shock protein 70 expression as histological marker of paraquat-induced damage to rat liver cells. Acta Histochem Cytochem 32:381–386

    CAS  Google Scholar 

  • Latour I, Buc-Calderon P (1999) Survival and metabolic function of freshly isolated rat hepatocytes exposed first to a heat shock and then to oxidative stress. Int J Toxicol 18:239–244

    Article  CAS  Google Scholar 

  • Lee MJ, Nishio H, Ayaki H, Yamamoto Y, Sumino K (2002) Upregulation of stress response mRNAs in COS-7 cells exposed to cadmium. Toxicology 174:109–117

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Kadiiska MB, Liu Y, Lu T, Qu W, Waalkes MP (2001) Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61:314–320

    Article  CAS  PubMed  Google Scholar 

  • Madden EF, Akkerman M, Fowler BA (2002) A comparison of 60, 70, and 90 kDa stress protein expression in normal rat NRK-52 and human HK-2 kidney cell lines following in vitro exposure to arsenite and cadmium alone or in combination. J Biochem Mol Toxicol 16:24–32

    Article  CAS  PubMed  Google Scholar 

  • Morgan KT (1997) A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assessment. Toxicol Pathol 25:291–307

    CAS  PubMed  Google Scholar 

  • Morgan KT, Gross EA, Joyner DR, Ishmael J, Thake D (1997) Proliferative nasal lesions induced in rats by alachlor, acetochlor and butachlor originate in specific regions of the olfactory mucosa. Toxicologist 36:112

    Google Scholar 

  • Reed CJ, Gaskell BA, Banger KK, Lock EA (1995) Olfactory toxicity of methyl iodide in the rat. Arch Toxicol 70:51–56

    Article  CAS  PubMed  Google Scholar 

  • Rokutan K, Hirakawa T, Teshima S, Honda S, Kishi K (1996) Glutathione depletion impairs transcriptional activation of heat shock genes in primary cultures of guinea pig gastric mucosal cells. J Clin Invest 97:2242–2250

    CAS  PubMed  Google Scholar 

  • Salminen WF, Voellmy R, Roberts SM (1996) Induction of hsp70 in HepG2 cells in response to hepatotoxicants. Toxicol Appl Pharmacol 141:117–123

    Article  CAS  PubMed  Google Scholar 

  • Salminen WF, Voellmy R, Roberts SM (1997a) Differential heat shock protein induction by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J Pharmacol Exp Ther 282:1533–1540

    CAS  PubMed  Google Scholar 

  • Salminen WF, Voellmy R, Roberts SM (1997b) Protection against hepatotoxicity by a single dose of amphetamine: the potential role of heat shock protein induction. Toxicol Appl Pharmacol 147:247–258

    Article  CAS  PubMed  Google Scholar 

  • Snawder J E, Tirmenstein M A, Mathias P I, Toraason M (1999) Induction of stress proteins in rat cardiac myocytes by antimony. Toxicol Appl Pharmacol 159:91–97

    Article  CAS  PubMed  Google Scholar 

  • Steiner E, Kleinhappl B, Gutschi A, Marth E (1998) Analysis of hsp70 mRNA levels in HepG2 cells exposed to various metals differing in toxicity. Toxicol Lett 96–97:169–176

    Google Scholar 

  • Trautinger F, Kokesch C, Klosner G, Knobler RM, Kindas-Mugge I (1999) Expression of the 72-kD heat shock protein is induced by ultraviolet A radiation in a human fibrosarcoma cell line. Exp Dermatol 8:187–192

    CAS  PubMed  Google Scholar 

  • Turk MAM, Henk WG, Flory W (1987) 3-Methylindole-induced nasal mucosal damage in mice. Vet Pathol 24:400–403

    CAS  PubMed  Google Scholar 

  • Uraih LC, Maronpot RR (1990) Normal histology of the nasal cavity and application of special techniques. Environ Health Perspect 85:187–208

    Google Scholar 

  • Urani C, Melchioretto P, Morazzoni F, Canevali C, Camatini M (2001) Copper and zinc uptake and hsp70 expression in HepG2 cells. Toxicol In Vitro 15:497–502

    Article  CAS  PubMed  Google Scholar 

  • VanDyke RA, Mostafapour S, Marsh HM, Li Y, Chopp M (1992) Immunocytochemical detection of the 72-kDa heat shock protein in halothane-induced hepatotoxicity in rats. Life Sci 50:PL41–PL45

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zuzel KA, Rahman K, Billington D (1999) Treatment with aged garlic extract protects against bromobenzene toxicity to precision cut rat liver slices. Toxicology 132:215–225

    Article  CAS  PubMed  Google Scholar 

  • Young JT (1981) Histopathologic examination of the rat nasal cavity. Fundam Appl Toxicol 1:309–312

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia J. Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, S.A., Alexander, D.J. & Reed, C.J. Heat shock protein 70 in the rat nasal cavity: localisation and response to hyperthermia. Arch Toxicol 78, 344–350 (2004). https://doi.org/10.1007/s00204-004-0541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0541-8

Keywords

Navigation