Skip to main content
Log in

Expression profiles and characterization of microRNAs responding to chitin in Arthrobotrys oligospora

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it’s target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Aam BB, Heggset EB, Norberg AL et al (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8(5):1482–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiol (Reading) 150(Pt 7):2029–2035

    Article  CAS  Google Scholar 

  • Baratto CM, Dutra V, Boldo JT (2006) Isolation, characterization, and transcriptional analysis of the chitinase chi2 gene (DQ011663) from the biocontrol fungus metarhizium anisopliae var. Anisopliae. Curr Microbiol 53(3):217–221

    Article  CAS  PubMed  Google Scholar 

  • Chang SS, Zhang Z, Liu Y (2012) RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66:305–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartier C, Pors I (2003) Effect of the nematophagous fungus, Duddingtonia flagrans, on the larval development of goat parasitic nematodes: a plot study. Vet Res 34(2):221–230

    Article  PubMed  Google Scholar 

  • Chen Q, Peng D (2019) Nematode chitin and application. Adv Exp Med Biol 1142:209–219

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Gao Y, Zhang KQ et al (2013) Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora. Environ Microbiol Rep 5(4):511–517

    Article  PubMed  Google Scholar 

  • Cogoni C, Macino G (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora Crassa. Proc Natl Acad Sci U S A 94(19):10233–10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui C, Wang Y, Liu J et al (2019) A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat Commun 10:4298

    Article  PubMed  PubMed Central  Google Scholar 

  • Dang Y, Yang Q, Xue Z et al (2011) RNA interference in fungi: pathways, functions, and applications. Eukaryot Cell 10(9):1148–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng JJ, Shi D, Mao HH et al (2019) Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma Harzianum GIM 3.442 and its application in colloidal chitin conversion. Int J Biol Macromol 134:113–121

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Fang W, Guo S (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73(1):295–302

    Article  CAS  PubMed  Google Scholar 

  • Gong S, Meng Q, Qiao J et al (2022) Biological characteristics of recombinant arthrobotrys oligospora chitinase AO-801. Korean J Parasitol 60(5):345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Zhang S, Liu J (2023) Recent Advances in Chitin Biosynthesis Associated with the morphology and secondary Metabolite synthesis of Filamentous Fungi in Submerged Fermentation. J Fungi (Basel) 9(2):205

    Article  CAS  PubMed  Google Scholar 

  • Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93(2):533–543

    Article  CAS  PubMed  Google Scholar 

  • Hertzberg H, Larsen M, Maurer V (2002) Biologische Helminthenkontrolle Bei Weidetieren Mit Nematophagen Pilzen [Biological control of helminths in grazing animals using nematophagous fungi]. Berl Munch Tierarztl Wochenschr 115(7–8):278–285

    PubMed  Google Scholar 

  • Ji X, Li H, Zhang W et al (2019) The lifestyle transition of Arthrobotrys oligospora is mediated by microRNA-like RNAs. Sci China Life Sci 63(4):543–551

    Article  PubMed  Google Scholar 

  • Ji X, Li H, Zhang W et al (2020) The lifestyle transition of Arthrobotrys oligospora is mediated by microRNA-like RNAs. Sci China Life Sci 63(4):543–551

    Article  CAS  PubMed  Google Scholar 

  • Junges Â, Boldo JT, Souza BK et al (2014) Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus metarhizium anisopliae. PLoS ONE 9(9):e107864

    Article  PubMed  PubMed Central  Google Scholar 

  • Karthik N, Akanksha K, Pandey A (2014) Production, purification and properties of fungal chitinases–a review. Indian J Exp Biol 52(11):1025–1035

    PubMed  Google Scholar 

  • Larsen M (2006) Biological control of nematode parasites in sheep. J Anim Sci 84:E133–E139

    Article  PubMed  Google Scholar 

  • Lee HC, Li L, Gu W (2010) Diverse pathways generate microRNA-like RNAs and dicer-independent small interfering RNAs in fungi. Mol Cell 38(6):803–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Liu Y (2011) Diverse small non-coding RNAs in RNA interference pathways. Methods Mol Biol 764:169–182

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yu L, Yang J et al (2010a) New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol Biol 10:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Chang SS, Liu Y (2010b) RNA interference pathways in filamentous fungi. Cell Mol Life Sci 67(22):3849–3863

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wang D, Gong J et al (2022) Individual and combined application of Nematophagous Fungi as Biological Control agents against Gastrointestinal nematodes in domestic animals. Pathogens 11(2):172

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T, Long X, Zhou JP et al (2021) Fungistatic mechanism of Ammonia against Nematode-Trapping Fungus Arthrobotrys oligospora, and strategy for this Fungus to survive Ammonia. mSystems 6(5):e0087921

    Article  PubMed  Google Scholar 

  • Michlewski G, Cáceres JF (2019) Post-transcriptional control of miRNA biogenesis. RNA 25(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno F, Herrero P (2002) The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae. FEMS Microbiol Rev 26(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Nicolás FE, Ruiz-Vázquez RM (2013) Functional diversity of RNAi-associated sRNAs in fungi. Int J Mol Sci 14(8):15348–15360

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandit R, Patel R, Patel N et al (2017) RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi. World J Microbiol Biotechnol 33(4):65

    Article  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Roncero C, de Vázquez CR (2020) Glucanases and Chitinases. Curr Top Microbiol Immunol 425:131–166

    CAS  PubMed  Google Scholar 

  • Shin KS, Kwon NJ, Kim YH et al (2009) Differential roles of the ChiB chitinase in autolysis and cell death of aspergillus nidulans. Eukaryot Cell 8(5):738–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trieu TA, Calo S, Nicolás FE et al (2015) A non-canonical RNA silencing pathway promotes mRNA degradation in basal Fungi. PLoS Genet 11(4):e1005168

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanstokstraeten R, Crombé F, Piérard D et al (2022) Molecular characterization of extraintestinal and diarrheagenic Escherichia coli blood isolates. Virulence 13(1):2032–2041

    Article  CAS  Google Scholar 

  • Waller PJ, Larsen M (1993) The role of nematophagous fungi in the biological control of nematode parasites of livestock. Int J Parasitol 23(4):539–546

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Ma N, Rao W et al (2023) Recent advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and its application in sustainable agriculture. Pathogens 12(3):367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342(6154):118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong-Bajracharya J, Singan VR, Monti R et al (2022) The ectomycorrhizal fungus Pisolithus Microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc Natl Acad Sci U S A 119(3):e2103527119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Zhang H, Zhao Q et al (2023) Construction of yeast one-hybrid Library of Alternaria oxytropis and screening of transcription factors regulating swnK gene expression. J Fung 9(8):822

    Article  CAS  Google Scholar 

  • Yang J, Zhang KQ (2019) Chitin synthesis and degradation in Fungi: Biology and enzymes. Adv Exp Med Biol 1142:153–167

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wang L, Ji X et al (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7(9):e1002179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yu Y, Li J et al (2013) Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora. Arch Microbiol 195(7):453–462

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Tan JL, Wei LX et al (2012) Morphology regulatory metabolites from Arthrobotrys oligospora. J Nat Prod 75(7):1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang X, Cai Z et al (2018) A novel class of microRNA-recognition elements that function only within open reading frames. Nat Struct Mol Biol 25(11):1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang E, Zhang J, Zhao R et al (2022) Role of MicroRNA-Like RNAs in the regulation of Spore Morphological differences in the Entomopathogenic Fungus Metarhizium Acridum. Pol J Microbiol 71(3):309–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Fu Y, Xie J et al (2012) Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Genet Genomics 287(4):275–282

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Xu J, Dong J et al (2021) Historical differentiation and recent hybridization in natural populations of the Nematode-Trapping Fungus Arthrobotrys oligospora in China. Microorganisms 9(9):1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff who provided technical support for this study.

Funding

This work was supported by the National Natural Science Foundation (No. 32060801, 32260888, 31460654) and Xinjiang Autonomous Region graduate innovation project (No. XJGRI2015038).

Author information

Authors and Affiliations

Authors

Contributions

N.-X. L.: Investigation, Formal analysis, Writing—original draft. Y.-S.S., L.-X. W. and Y.-C. L.: Resources, Investigation. Y.-H.L. and J.-H.Z.: Formal analysis, Writing—original draft. N.-X.L.: and D.-M.S.: Data analysis and discussion. J.J. and Y.-F.Z. and R.-B.L.: Validation, Software. J.Q., X.-P.C. and Q.-L.M.: Conceptualization, Funding acquisition. J.Q. and Q.-L.M.: Conceptualization, Funding acquisition, Writing—review & editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jun Qiao or Qingling Meng.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Informed consent Statement

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Yusuf Akhter.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Sun, Y., Liu, Y. et al. Expression profiles and characterization of microRNAs responding to chitin in Arthrobotrys oligospora. Arch Microbiol 206, 220 (2024). https://doi.org/10.1007/s00203-024-03949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03949-x

Keywords

Navigation