Skip to main content
Log in

Glucosylglycerol and proline reverse the effects of glucose on Rhodosporidium toruloides lifespan

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Rhodosporidium toruloides is a novel cell factory used to synthesis carotenoids, biosurfactants, and biofuel feedstocks. However, research on R. toruloides has generally centred on the manufacture of biochemicals, while analyses of its longevity have received scant attention. Understanding of R. toruloides longevity under different nutrient conditions could help to improve its biotechnological significance and metabolite production. Glucosylglycerol (GG) and proline are osmoprotectants that could revert the harmful effects of environmental stress. This study examined how GG and proline affect R. toruloides strain longevity under glucose nutrimental stress. Herein, we provide evidence that GG and proline enhance cell performance and viability. These compatible solutes neutralises the pro-ageing effects of high glucose (10% glucose) on the yeast cell and reverse its cellular stress. GG exhibits the greatest impact on lifespan extension at 100 mM, whereas proline exerts effect at 2 mM. Our data reveal that these compounds significantly affect the culture medium osmolarity. Moreso, GG and proline decreased ROS production and mitohormetic lifespan regulation, respectively. The data indicates that these solutes (proline and GG) support the longevity of R. toruloides at a pro-ageing high glucose culture condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Datasets available from the corresponding author upon reasonable request.

References

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Bonawitz ND et al (2006) Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 26(13):4818–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burtner CR et al (2009a) A genomic approach to yeast chronological aging. In: Yeast functional genomics and proteomics: methods and protocols. pp 101–114

  • Burtner CR et al (2009b) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256–1270

    Article  CAS  PubMed  Google Scholar 

  • Coghe S et al (2005) Impact of dark specialty malts on extract composition and wort fermentation. J Inst Brew 111(1):51–60

    Article  Google Scholar 

  • Desplats P et al (2005) Sucrose may play an additional role to that of an osmolyte in Synechocystis sp. PCC 6803 salt-shocked cells. Plant Physiol Biochem 43(2):133–138

    Article  CAS  PubMed  Google Scholar 

  • El Moukhtari A et al (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2(2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio P et al (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166(7):1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Fei Q et al (2016) Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol Biofuels 9(1):130

    Article  PubMed  PubMed Central  Google Scholar 

  • Franceus J et al (2021) Engineering of a thermostable biocatalyst for the synthesis of 2-O-glucosylglycerol. ChemBioChem 22(18):2777–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garde-Cerdán T et al (2011) Evolution of nitrogen compounds during grape ripening from organic and non-organic monastrell–nitrogen consumption and volatile formation in alcoholic fermentation. In: Research in organic farming. pp 123–138

  • Giannattasio S et al (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354:93–98

    Article  CAS  PubMed  Google Scholar 

  • Hu J et al (2013) Assessing chronological aging in Saccharomyces cerevisiae. In: Cell senescence: methods and protocols. pp 463–472

  • Jakubowski W et al (2000) Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radical Biol Med 28(5):659–664

    Article  CAS  Google Scholar 

  • Kaeberlein M et al (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22(22):8056–8066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal R et al (2020) Exogenous l-proline improved Rhodosporidium toruloides lipid production on crude glycerol. Biotechnol Biofuels 13(1):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert and Simons (1998) Disinfectant testing: use of the Bioscreen Microbiological Growth Analyser for laboratory biocide screening. Lett Appl Microbiol 26(4):288–292

    Article  PubMed  Google Scholar 

  • Lapointe J, Hekimi S (2010) When a theory of aging ages badly. Cell Mol Life Sci 67:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X et al (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutchman V et al (2016) Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 7(13):16542

    Article  PubMed  PubMed Central  Google Scholar 

  • Madeo F et al (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139(3):729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins D, English AM (2014) Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol 2:308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura K, Takagi H (2005) Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. J Biosci Bioeng 100(5):538–544

    Article  CAS  PubMed  Google Scholar 

  • McCleary DF, Rine J (2017) Nutritional control of chronological aging and heterochromatin in Saccharomyces cerevisiae. Genetics 205(3):1179–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misiak M et al (2017) DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer’s disease. Aging Cell 16(1):162–172

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SJ et al (2018) Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab 27(3):667–676.e664

  • Mohammad K, Titorenko VI (2021) Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors. Oncotarget 12(7):608

    Article  PubMed  PubMed Central  Google Scholar 

  • Molon M et al (2016) The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast. Age 38:1–15

    Article  CAS  Google Scholar 

  • Morita Y et al (2003) L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase. Appl Environ Microbiol 69(1):212–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai Y et al (2019) Proline metabolism regulates replicative lifespan in the yeast Saccharomyces cerevisiae. Microbial Cell 6(10):482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami CJ et al (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63(2):113–121

    Article  PubMed  Google Scholar 

  • Nishimura A et al (2021) Longevity regulation by proline oxidation in yeast. Microorganisms 9(8):1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odoh CK et al (2023a) Glucosylglycerol extends chronological lifespan of the budding yeast via an increased osmolarity response. Indian J Microbiol 63(1):42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odoh CK et al (2023b) Exogenous glucosylglycerol and proline extend the chronological lifespan of Rhodosporidium toruloides. Int Microbiol 26(4):807–819

    Article  CAS  PubMed  Google Scholar 

  • Olivares-Marin IK et al (2018) Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. J Vis Exp (139):58192

  • Perrone GG et al (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783(7):1354–1368

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:1–30

    Article  Google Scholar 

  • Sawangwan T et al (2010) Glucosylglycerol and glucosylglycerate as enzyme stabilizers. Biotechnol J 5(2):187–191

    Article  CAS  PubMed  Google Scholar 

  • Scalarone GM, Mikami Y, Kurita N, Yazawa K, Miyaji M (1992) Comparative studies on the postantifungal effect produced by the synergistic interaction of flucytosine and amphotericin B on Candida albicans. Mycopathologia 120(3):133–138. https://doi.org/10.1007/BF00436389

    Article  CAS  PubMed  Google Scholar 

  • Schwaiger KN et al (2021) Whole cell-based catalyst for enzymatic production of the osmolyte 2-O-α-glucosylglycerol. Microb Cell Fact 20:1–16

    Article  Google Scholar 

  • Shields HJ et al (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biol 9:628157

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva Z et al (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172

    Article  CAS  PubMed  Google Scholar 

  • Small EM et al (2020) SPOCK, an R based package for high-throughput analysis of growth rate, survival, and chronological lifespan in yeast. Transl Med Aging 4:141–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81(2):211–223

    Article  CAS  PubMed  Google Scholar 

  • Tello-Padilla MF et al (2018) Glutathione levels influence chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner. Yeast 35(5):387–396

    Article  CAS  PubMed  Google Scholar 

  • Wen Z et al (2020) Rhodosporidium toruloides—a potential red yeast chassis for lipids and beyond. FEMS Yeast Res 20(5):foaa038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2022) Comparative fatty acid compositional profiles of Rhodotorula toruloides haploid and diploid strains under various storage conditions. Fermentation 8(9):467

    Article  CAS  Google Scholar 

  • Zou K et al (2020) Life span extension by glucose restriction is abrogated by methionine supplementation: cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci Adv 6(32):eaba1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CKO wishes to thank CAS-TWAS President’s Fellowship for the award of PhD scholarship (2019A8003833001).

Funding

We received no funding for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

CKO: conceptualisation, methodology, investigation, data curation, writing-original draft, validation, reviewing, revision, and editing. LAMP: writing original draft, review, editing RK: reviewing, editing, and suggestion.

Corresponding author

Correspondence to Chuks Kenneth Odoh.

Ethics declarations

Conflict of interest

No competing interests declared.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odoh, C.K., Madrigal-Perez, L.A. & Kamal, R. Glucosylglycerol and proline reverse the effects of glucose on Rhodosporidium toruloides lifespan. Arch Microbiol 206, 195 (2024). https://doi.org/10.1007/s00203-024-03930-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03930-8

Keywords

Navigation