Skip to main content
Log in

Neiella litorisoli sp. nov., an alginate lyase: producing bacterium from South China Sea, and proposal of Echinimonadaceae fam. nov. in the order Alteromonadales

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, rod-shaped bacterium, designated HB171785T, was isolated from soil sample collected from Qishui Bay, Hainan, China. The strain grew optimally at pH 7–8, 37–40 °C and with NaCl 3–4%. The predominant isoprenoid quinone was found to be Q-8 and the major fatty acids were C16:0, C16:1 ω7c/C16:1 ω6c, C18:1 ω7c/C18:1 ω6c and C12:0 3OH. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The size of the draft genome was 4.32 Mbp with G + C content 49.7%. Phylogenetic analysis of 16S rRNA gene sequence indicated that the closest phylogenetically related species were Neiella marina j221T, “Neiella holothuriorum” 126 and Echinimonas agarilytica KMM 6351T with the similarities of 98.2, 96.0 and 95.0%, respectively. The phylogenetic tree based on 16S rRNA gene and phylogenomic tree based on core genome showed that strain HB171785T clustered together with N. marina j221T, with the highest values of average nucleotide identity (82.9%) and digital DNA-DNA hybridization (25.4%). The combined phylogenetic relatedness, phenotypic and genotypic features supported the conclusion that strain HB171785T represents a novel species of the genus Neiella, for which the name Neiella litorisoli sp. nov. is proposed. The type strain is HB171785T (= MCCC 1K04625T = KCTC 82319T). In addition, Echinimonadaceae fam. nov. in the order Alteromonadales was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The GenBank/EMBL/DDBJ accession numbers for 16S rRNA gene and draft genome sequences of strain HB171785T are MN911325 and JACXAF000000000, respectively.

Abbreviations

AAI:

Average amino acid identity

AL:

Aminolipid

ANI:

Average nucleotide identity

APL:

Aminophospholipid

dDDH:

Digital DNA–DNA hybridization

DPG:

Diphosphatidylglycerol

L:

Lipid

LPSN:

List of prokaryotic names with standing in nomenclature

MA:

Marine agar 2216

MB:

Marine broth 2216

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PL:

Polysaccharide lyase

Q-8:

Ubiquinone 8

TLC:

Thin-layer chromatography

UBCG:

Up-to-date bacterial core gene

References

  • Bai XF, Lv XL, Liu X et al (2022) Neiella holothuriorum sp. nov., isolated from the gut of a sea cucumber Apostichopus japonicus. Antonie Van Leeuwenhoek 115:497–503

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Chang H, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49(D1):D344–D354

    Article  CAS  PubMed  Google Scholar 

  • Brettin T, Davis JJ, Disz T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365–8370

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XL, Dong S, Xu F et al (2016) Characterization of a new cold-adapted and salt-activated polysaccharide lyase family 7 alginate lyase from Pseudoalteromonas sp. SM0524. Front Microbiol 7:1120–1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Chernysheva N, Bystritskaya E, Likhatskaya G et al (2021) Genome-wide analysis of PL7 alginate lyases in the genus Zobellia. Molecules 26:2387–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324

    Article  PubMed  Google Scholar 

  • Chun J, Oren A, Ventosa A et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  PubMed  Google Scholar 

  • Delcher AL, Bratke KA, Powers EC et al (2007) Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinforma 6:673–679

    Article  Google Scholar 

  • Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing

    Google Scholar 

  • Du ZJ, Miao TT, Liu QQ et al (2013) Neiella marina gen. nov., sp. nov., isolated from the sea cucumber Apostichopus japonicus. Int J Syst Evol Microbiol 63:1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Huang HQ, Zheng ZG, Zou XX et al (2022) Genome analysis of a novel polysaccharide- degrading bacterium Paenibacillus algicola and determination of alginate lyases. Mar Drugs 20:388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova EP, Sawabe T, Lysenko AM et al (2002) Pseudoalteromonas ruthenica sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 52:235–240

    Article  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:457–462

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki KI (1987) Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ et al (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 9:3100–3108

    Article  Google Scholar 

  • Lee T, Nishimura M, Yamashita T et al (1994) A simple method for determination of substrate specificity of alginate lyases. J Fermen Bioeng 2:182–184

    Google Scholar 

  • Lee I, KimY O, Park SC et al (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 5:955–964

    Article  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP et al (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60–73

    Article  Google Scholar 

  • Meier-Kolthoff JP, SardàCarbasse J, Peinado-Olarte RL et al (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of isoprenoid Quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Murray TS, Ledizet M, Kazmierczak BI (2010) Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 59:511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na SI, Kim YO, Yoon SH et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285

    Article  Google Scholar 

  • Nakagawa T, Iino T, Suzuki K et al (2006) Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov., selenate-reducing bacteria belonging to the Gammaproteobacteria isolated from Tokyo Bay. Int J Syst Evol Microbiol 56:2639–2645

    Article  CAS  PubMed  Google Scholar 

  • Nedashkovskaya QI, Stenkova AM, Lee JS et al (2013) Echinimonas agarilytica gen. nov., sp. nov., a new gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius. Antonie Van Leeuwenhoek 103:69–77

    Article  CAS  PubMed  Google Scholar 

  • Neumann AM, Balmonte JP, Berger M et al (2015) Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ Microbiol 17:3857–3868

    Article  CAS  PubMed  Google Scholar 

  • Nicholson AC, Gulvik CA, Whitney AM et al (2020) Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 70:4432–4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Choi WC, Oh TK et al (2011) Thalassomonas agariperforans sp. nov., an agarolytic bacterium isolated from marine sand. Int J Syst Evol Microbiol 61:2573–2576

    Article  PubMed  Google Scholar 

  • Rodríguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9:111–118

    Google Scholar 

  • Ruan JS (2006) A rapid determination method for phosphate lipids. Microbiol China 37:190–193

    Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DJ et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Kwon S et al (2017a) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Lim JM et al (2017b) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yohe T, Huang L et al (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu BW, Sun Y, Ni F et al (2018) Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03. Int J Biol Macromol 108:1140–1147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Qiliang Lai (Third Institute of Oceanography, MNR, China) for his help in the proposal of the novel family, and generation of the bacterial core genome tree using UBCG tool.

Funding

This research was supported by grants from the Key Research and Development Project of Hainan Province (ZDYF2020182), the Financial Fund of the Ministry of Agriculture and Rural Affairs of China (NFZX2021, NHYYSWZZZYKZX2020) and Central Public-interest Scientific Institution Basal Research Fund from Chinese Government (1630052019014).

Author information

Authors and Affiliations

Authors

Contributions

J-RS and XL conducted the experiments. K-LM and Y-HH conceived and designed research. Z-YL analyzed data. H-QH and J-RS wrote the manuscript and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhi-Yuan Liu or Hui-Qin Huang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

The manuscript is submitted with the consent of all authors.

Additional information

Communicated by Praveen Rahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 708 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JR., Mo, KL., Li, X. et al. Neiella litorisoli sp. nov., an alginate lyase: producing bacterium from South China Sea, and proposal of Echinimonadaceae fam. nov. in the order Alteromonadales. Arch Microbiol 205, 227 (2023). https://doi.org/10.1007/s00203-023-03573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03573-1

Keywords

Navigation