Skip to main content

Advertisement

Log in

Larvicidal, antioxidant and biotoxicity assessment of (2-(((2-ethyl-2 methylhexyl)oxy)carbonyl)benzoic acid isolated from Bacillus pumilus against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mosquitoes are a vector for many dreadful diseases known for their public health concern. The continued use of synthetic insecticides against vector control has led to serious environmental impacts, human health problems, and the development of insect resistance. Hence, alternative mosquito control methods are needed to protect the environment and human health. In the present study, the bioefficacy of (2-(((2-ethyl-2 methylhexyl)oxy)carbonyl) benzoic acid isolated from Bacillus pumilus were tested against Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. The isolated bioactive compound was characterized through thin layer chromatography (TLC), UV–visible spectroscopy (UV), Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gas chromatography–mass spectrometry analysis. The pure compound caused a high percent mortality rate in a dose-dependent manner, the obtained values were 96, 82, 69, 50 and 34%; 86, 72, 56, 43, and 44%; 100, 90, 83, 70 and 56% against Ae. aegypti, Cx. quinquefasciatus, and An. stephensi respectively. The effective lethal concentration values (LC50) were 13.65, 14.90 and 9.64 ppm against Ae. aegypti, Cx. quinquefasciatus, An. Stephensi, respectively. The effect of (2-(((2-ethyl-2 methylhexyl)oxy)carbonyl) benzoic acid significantly increased the superoxide dismutase, catalase, α, β esterase and Glutathione-S-transferase level after 24 h of the treatment period. The comet assay confirmed that isolated compound causes DNA damage in all tested insects. Histopathological examinations of treated larvae showed shrunken body posture, damaged epithelial cells and microvillus as compared to control organisms. The biosafety of the isolated compound was assessed against G. affinis and did not produce mortality which confirmed that the activity of the isolated compound is species specific. The current study concludes that the critical success factors of new insecticidal agent development are based on the eco-compatibility and alternative tools for the pesticide producing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

Download references

Acknowledgements

The author (Dr. Rajan Maheswaran/Principal Investigator/DST-SERB Project, File No. EEQ/2018/000557) is thankful to the Department of Science and Technology, New Delhi, India for providing financial support and Periyar University, Salem, Tamil Nadu for providing laboratory facilities.

Funding

This work was funded by the Science and Engineering Board, Department of Science and Technology, New Delhi, India (File No. EEQ/2018/000557). Rajan Maheswaran declared that the funds were supported by the Science and Engineering Board, Department of Science and Technology, New Delhi, India (File No. EEQ/2018/000557); Krishnan Raguvaran, Manickam Kalpana, Thulasiraman Manimegalai, Suresh Kalaivani, Palanisamy Devapriya, Nagarajan Siddharthan, Rengasamy Balakrishnan, Tamil Selvan Silambarasan declared that there was no fund support in the research process. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KR: investigation, writing—original draft, MK, TM, NS, RB, TSS, investigation, SK, PD: writing—review and editing, RM: conceptualization, supervision.

Corresponding author

Correspondence to Rajan Maheswaran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethical approval

Not applicable.

Consent to publish

Not applicable.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raguvaran, K., Kalpana, M., Manimegalai, T. et al. Larvicidal, antioxidant and biotoxicity assessment of (2-(((2-ethyl-2 methylhexyl)oxy)carbonyl)benzoic acid isolated from Bacillus pumilus against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Arch Microbiol 204, 650 (2022). https://doi.org/10.1007/s00203-022-03264-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03264-3

Keywords

Navigation