Skip to main content

Advertisement

Log in

Crosstalk and gene expression in microorganisms under metals stress

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HMs:

Heavy metals

ROS:

Reactive oxygen species

OH:

Hydroxyl radical

H2O2 :

Hydrogen peroxide

IRT:

Iron-regulated transporter

ZRT:

Zinc regulated transporter

PCs:

Phytochelatins

APS:

ATP sulfurylase

MAPK:

Mitogen-activated protein kinase

SA:

Salicylic acid

JA:

Jasmonate

TN1:

Taichung native1

AP2:

Activator Protein 2

Bzip:

Basic region leucine ZIPper

ERF:

Ethylene-responsive factor

MYB:

MYeloBlastosis

DREB:

Dehydration responsive element-binding protein

SOD:

Superoxide dismutase

CAT:

Catalase

EIN3:

Ethylene-Insensitive 3

References

  • Ahammed GJ, Yang Y (2022) Anthocyanin-mediated arsenic tolerance in plants. Environ Pollut 292:118475

    Article  CAS  PubMed  Google Scholar 

  • Al-Garni SM, Ghanem KM, Ibrahim AS (2010) Biosorption of mercury by capsulated and slime layerforming Gram-ve bacilli from an aqueous solution. Afr J Biotech 9(38):6413–6421

    CAS  Google Scholar 

  • Al-Hakimi AMA (2007) Modification of cadmium toxicity in pea seedlings by kinetin. Plant Soil Environ 53(3):129

    Article  CAS  Google Scholar 

  • An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24(14):2579–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arantza SJ, Hiram MR, Erika K, Chávez-Avilés MN, Valiente-Banuet JI, Fierros-Romero G (2022) Bio-and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN Appl Sci 4(2):1–14

    Article  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gómez-Gómez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Verma S, Vyas D, Per TS, Khan NA (2018) Ethylene and polyamines in counteracting heavy metal phytotoxicity: a crosstalk perspective. J Plant Growth Regul 37(4):1050–1065

    Article  CAS  Google Scholar 

  • Ashraf U, Hussain S, Anjum SA, Abbas F, Tanveer M, Noor MA, Tang X (2017) Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiol Biochem 115:461–471

    Article  CAS  PubMed  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Bali AS, Sidhu GPS, Kumar V (2020) Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett 18(4):1243–1275

    Article  CAS  Google Scholar 

  • Banerjee S, Sirohi A, Ansari AA, Gill SS (2017) Role of small RNAs in abiotic stress responses in plants. Plant Gene 11:180–189

    Article  CAS  Google Scholar 

  • Bano A, Gupta A, Rai S, Fatima T, Sharma S, Pathak N (2021) Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. In: Hasanuzzaman M, Nahar K (eds) Plant stress physiology - perspectives in agriculture. https://doi.org/10.5772/intechopen.101045

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotech 9(21):3140–3143

    Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Pöschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAPkinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci 106(19):8067–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy metals-rich industrial wastewater. Environ Sci Pollut Res 20(9):6628–6637

    Article  CAS  Google Scholar 

  • Bhattacharya A, Gupta A, Kaur A, Malik D (2014) Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol 98(23):9829–9841

    Article  CAS  PubMed  Google Scholar 

  • Canaparo R, Foglietta F, Limongi T, Serpe L (2021) Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 14(1):53

    Article  CAS  Google Scholar 

  • Chaturvedi MK (2011) Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent. J Environ Prot 2(1):76

    Article  CAS  Google Scholar 

  • Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT, Huang HJ (2014) Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS ONE 9(5):e95163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Cao S (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171(1):707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50(6):789–793

    Article  CAS  PubMed  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4):e23681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen CK, Garvin DF, Kochian LV (2004) Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 218(5):784–792

    Article  CAS  PubMed  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146(1–2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110(4):512–517

    Article  CAS  Google Scholar 

  • D’Alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12(11):4979–4997

    Article  PubMed  CAS  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40–52

    Article  CAS  PubMed  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10(4):471–477

    Article  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper andmanganese. Environ Expe Bot 52(3):253–266

    Article  CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmiumresponsivemicroRNAs in rice (Oryza sativa). J Exp Bot 62(10):3563–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Shen SZ, Sun H, Sun K, Liu F (2014) Synthesis of L-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens Actuators, B Chem 203:35–43

    Article  CAS  Google Scholar 

  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals 17(4):379–387

    Article  PubMed  Google Scholar 

  • Du YL, He MM, Xu M, Yan ZG, Zhou YY, Guo GL, Nie J, Wang LQ, Hou H, Li FS (2014) Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium. Soil Biol Biochem 72:193–202

    Article  CAS  Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11(1):1–19

    Article  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • El Rasafi T, Nouri M, Bouda S, Haddioui A (2016) The effect of Cd, Zn and Fe on seed germination and early seedling growth of wheat and bean. Ekologia 35(3):213–223

    Article  Google Scholar 

  • El Rasafi T, Oukarroum T, Haddioui A, Song H, Kwon EE, Bolan N, Tack FM, Sebastian A, Prasad MNV, Rinklebe J (2021) Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Crit Rev Environ Sci Technol 52:675–726

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  • Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenicplants. New Phytol 185(4):964–978

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wang J, Bai Z, Reading L (2019) Effects of surface coal mining and land reclamation on soil properties: a review. Earth Sci Rev 191:12–25

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    Article  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspigoesingense. Appl Environ Microbiol 71(12):8627–8633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gao Y, Feng B, Gao C, Zhang H, Wen F, Tao L, Xiong J (2022) The evolution and functional roles of miR408 and its targets in plants. Int J Mol Sci 23(1):530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16(3):1807–1828

    Article  CAS  Google Scholar 

  • Ghose MK (2005) Soil conservation for rehabilitation and revegetation of mine-degraded land. TERI Inf Dig Energy Environ 4(2):137–150

    Google Scholar 

  • Ghosh S, Bheri M, Bisht D, Pandey GK (2022) Calcium signaling and transport machinery: Potential for development of stress tolerance in plants. Curr Plant Biol 29:100235

    Article  Google Scholar 

  • Goyal D, Yadav A, Prasad M, Singh TB, Shrivastav P, Ali A, Mishra S (2020) Effect of heavy metals on plant growth: an overview. Contam Agric 1023:79–101

    Article  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465(1–2):190–198

    Article  CAS  Google Scholar 

  • Hasan M, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY (2017) Responses of plant proteins to heavy metal stress-a review. Front Plant Sci 8:1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasgül E, Malkoç S, Güven A, Alper DEDE, Güven K (2019) Biosorption of cadmium and copper by Aspergillus spp. isolated from industrial ceramic waste sludge. Biyolojik Çeşitlilik ve Koruma 12(3):44–56

    Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytorem 19(6):522–529

    Article  CAS  Google Scholar 

  • He Q, Zhu S, Zhang B (2014) MicroRNA–target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Funct Integr Genomics 14(3):507–515

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, cell Environ 26(6):867–874

    Article  CAS  Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170(11):965–975

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L (2017) OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Sci 264:1–8

    Article  CAS  PubMed  Google Scholar 

  • Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated newmicroRNAs from rice. J Inorg Biochem 103(2):282–287

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Zhou J, Jie Y, Xing H, Zhong Y, She W et al (2016) A ramie (Boehmeria nivea) bZIP transcription factor BnbZIP3 positively regulates drought, salinity and heavy metal tolerance. Mol Breed 36:120

    Article  CAS  Google Scholar 

  • Huang YH, Peng SF, Lin YP, Cheng YM (2020) The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from a chromosomes. Chromosome Res 28(2):129–138

    Article  CAS  PubMed  Google Scholar 

  • Imran QM, Falak N, Hussain A, Mun BG, Yun BW (2021) Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11(8):1579

    Article  CAS  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Article  CAS  PubMed  Google Scholar 

  • Ivanov R, Vert G (2021) Endocytosis in plants: peculiarities and roles in the regulated trafficking of plant metal transporters. Biol Cell 113(1):1–13

    Article  PubMed  Google Scholar 

  • Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A (2015) Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr Iran. Clean-Soil Air Water 43(1):118–126

    Article  CAS  Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Javaid MH, Khan AR, Salam A, Neelam A, Azhar W, Ulhassan Z, Gan Y (2022) Exploring the adaptive responses of plants to abiotic stresses using transcriptome data. Agriculture 12(2):211

    Article  CAS  Google Scholar 

  • Jia X, Liu T, Zhao Y, He Y, Yang M (2016) Elevated atmospheric CO2 affectedphotosynthetic products in wheat seedlings and biological activity in rhizosphere soilunder cadmium stress. Environ Sci Pollut Res 23(1):514–526

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecule, big impact. Front Plant Sci 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Renaut J (2009) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8(1):400–417

    Article  CAS  PubMed  Google Scholar 

  • Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol, Biotechnol 25(9):1542–1546

    Article  CAS  Google Scholar 

  • Kumar R, Bhatia D, Singh R, Rani S, Bishnoi NR (2011) Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int Biodeterior Biodegradation 65(8):1133–1139

    Article  CAS  Google Scholar 

  • Kumaran NS, Sundaramanicam A, Bragadeeswaran S (2011) Adsorption studies on heavy metals by isolated cyano bacterial strain (Nostoc sp.) from Uppanar estuarine water, southeast coast of India. J Appl Sci Res 7(11):1609–1615

    Google Scholar 

  • Lee JM, Seok KJ, Ryu JY, Jung WS, Park JB, Shin KH, Jang SJ (2017) Association between heavy metal exposure and prevalence of metabolicsyndrome in adults of South Korea. Korean J Fam Prac 7(2):172–178

    Article  Google Scholar 

  • Leftley N, Banda J, Pandey B, Bennett M, Voß U (2021) Uncovering how auxin optimizes root systems architecture in response to environmental stresses. Cold Spring Harb Perspect Biol 13(11):a040014

    Article  CAS  PubMed  Google Scholar 

  • Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Biores Technol 303:122886

    Article  CAS  Google Scholar 

  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y et al (2012) Duallevel regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8:e1002767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Qiu JL (2016a) MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28(11):2866–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang X, Liu X, Zhao Y, Wang B, Zhang J (2016b) miRNA alterations are important mechanism in maize adaptations to low-phosphate environments. Plant Sci 252:103–117

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cao H, Yuan Y, Jiang H, Hu Y, He J, Tu S (2021a) Combined passivators regulate the heavy metal accumulation and antioxidant response of Brassica chinensis grown in multi-metal contaminated soils. Environ Sci Pollut Res 28(35):49166–49178

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Qin L, Lai C, Wang Z, Zhou M, Zhang M (2021b) Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. Chemosphere 285:131432

    Article  CAS  PubMed  Google Scholar 

  • Ligterink W, Hirt H (2001) Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools. International Rev Cytol 209–275

  • Lima J, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10(4):2817–2832

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168(3):855–861

    Article  CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217(4):658–667

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. J Agric Food Chem 60(26):6524–6536

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Muhammad Z, Siyar S (2019) Assessment of heavy metal induced stress responses in pea (Pisum sativum L.). Acta Ecologica Sinica 39(4):284–288

    Article  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum 29(3):177–187

    Article  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57(1–2):187–194

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162(12):1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6:571–576

    CAS  Google Scholar 

  • Mathur P, Tripathi DK, Baluska F, Mukherjee S (2022) Molecular mechanisms of auxin mediated regulation of heavy metal and metalloid stress in plants. Environ Exp Bot 196:104796

    Article  CAS  Google Scholar 

  • Matthewman CA, Kawashima CG, Húska D, Csorba T, Dalmay T, Kopriva S (2012) miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Lett 586(19):3242–3248

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566(1–3):1–5

    Article  PubMed  CAS  Google Scholar 

  • Montero-Palmero MB, Martín-Barranco A, Escobar C, Hernández LE (2014) Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. New Phytol 201(1):116–130

    Article  CAS  PubMed  Google Scholar 

  • Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P (2018) The role of heavy metals in plant response to biotic stress. Molecules 23(9):2320

    Article  PubMed Central  CAS  Google Scholar 

  • Muneer B, Iqbal MJ, Shakoori FR, Shakoori AR (2013) Tolerance and biosorption of mercury by microbial consortia: Potential use in bioremediation of wastewater. Pak J Zool 45(1):247–254

    CAS  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    Article  CAS  Google Scholar 

  • Nahakpam S, Shah K (2011) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul 63(1):23–35

    Article  CAS  Google Scholar 

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveriazizanioides L. Int J Phytorem 20(7):682–691

    Article  CAS  Google Scholar 

  • Nazir F, Fariduddin Q, Khan TA (2020) Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252:126486

    Article  CAS  PubMed  Google Scholar 

  • Nedjimi B (2020) Germination characteristics of Peganum harmala L. (Nitrariaceae) subjected to heavy metals: Implications for the use in polluted dryland restoration. Int J Environ Sci Technol 17(4):2113–2122

    Article  CAS  Google Scholar 

  • Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res 24(11):10068–10082

    Article  CAS  Google Scholar 

  • Noman A, Sanaullah T, Khalid N, Islam W, Khan S, Irshad MK, Aqeel M (2019) Crosstalk between plant miRNA and heavy metal toxicity. Plant metallomics and functional omics. Springer, Cham, pp 145–168

    Chapter  Google Scholar 

  • Noman M, Aysha J, Ketehouli T, Yang J, Du L, Wang F, Li H (2021) Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance. J Plant Physiol 256:153327

    Article  CAS  PubMed  Google Scholar 

  • Nouri M, El Rasafi T, Haddioui A (2019) Responses of two barley subspecies to in vitro-induced heavy metal stress: Seeds germination, seedlings growth and cytotoxicity assay. Agriculture 65(3):107–118

    Google Scholar 

  • Nowicka B (2022) Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ Sci Pollut Res 29:1–52

    Article  CAS  Google Scholar 

  • Ogawa I, Nakanishi H, Mori S, Nishizawa NK (2009) Time course analysis ofgene regulation under cadmium stress in rice. Plant Soil 325(1):97–108

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed Central  CAS  Google Scholar 

  • Olmos E, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54(381):291–301

    Article  CAS  PubMed  Google Scholar 

  • Ong GH, Ho XH, Shamkeeva S, Fernando MS, A.S., Wong, L.S. (2017) Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediat J 27(4):59–63

    Article  Google Scholar 

  • Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Matsumoto T (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE 9(5):e96946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Qari HA (2017) Ensifer adhaerens for heavy metal bioaccumulation, biosorption, and phosphate solubilization under metal stress condition. J Taiwan Inst Chem Eng 80:540–552

    Article  CAS  Google Scholar 

  • Pei Z-M, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Pető A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Z (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108(3):449–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB plants. https://doi.org/10.1093/aobpla/plr032

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Żyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Mandal A (2015) Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J Environ Sci Health, Part A 50(11):1136–1147

    Article  CAS  Google Scholar 

  • Rai GK, Bhat BA, Mushtaq M, Tariq L, Rai PK, Basu U, Bhat JA (2021) Insights into decontamination of soils by phytoremediation: a detailed account on heavy metal toxicity and mitigation strategies. PhysiologiaPlantarum 173(1):287–304

    CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicas. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143(3):1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran ZHAO, Bi WANG, Cai QT, Li XX, Min LIU, Dong HU, Chun FAN (2016) Bioremediation of hexavalent chromium pollution by Sporosarcinasaromensis M52 isolated from offshore sediments in Xiamen China. Biomed Environ Sci 29(2):127–136

    Google Scholar 

  • Rao KM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157(1):113–128

    Article  Google Scholar 

  • Rao G, Huang S, Ashraf U, Mo Z, Duan M, Pan S, Tang X (2019) Ultrasonic seed treatment improved cadmium (Cd) tolerance in Brassica napus L. Ecotoxicol Environ Saf 185:109659

    Article  CAS  PubMed  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135(3):1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R (2022) A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 12(1):43

    Article  CAS  Google Scholar 

  • Roelofs D, Aarts MGM, Schat H, Van Straalen NM (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct Ecol 22(1):8–18

    Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gomez MD, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant, Cell Environ 27(9):1122–1134

    Article  CAS  Google Scholar 

  • Rucińska-Sobkowiak R, Nowaczyk G, Krzesłowska M, Rabęda I, Jurga S (2013) Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87:100–109

    Article  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37(17):4231–4235

    Article  CAS  PubMed  Google Scholar 

  • Salla V, Hardaway CJ, Sneddon J (2011) Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soils from Southwest Louisiana. Microchem J 97(2):207–212

    Article  CAS  Google Scholar 

  • Santisree P, Jalli LCL, Bhatnagar‐Mathur P, Sharma KK (2020) Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses. In: Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives, pp 342–373

  • Schellingen K, Van Der Straeten D, Remans T, Loix C, Vangronsveld J, Cuypers A (2015) Ethylene biosynthesis is involved in the early oxidative challenge induced by moderate Cd exposure in Arabidopsis thaliana. Environ Exp Bot 117:1–11

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    CAS  PubMed  Google Scholar 

  • Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H (2007) Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem Biophys Res Commun 361(4):1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. Crop production and global environmental issues. Springer, Cham, pp 1–25

    Google Scholar 

  • Shao HB, Chu LY, Ni FT, Guo DG, Li H, Li WX (2010) Perspective on phytoremediation for improving heavy metal-contaminated soils Plant adaptation and phytoremediation. Springer, Dordrecht, pp 227–244

    Google Scholar 

  • Sharma P (2021a) Role and significance of biofilm-forming microbes in phytoremediation—a review. Environ Technol Innov 25:102182

    Google Scholar 

  • Sharma P (2021b) Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: an update. Biores Technol 328:124835

    Article  CAS  Google Scholar 

  • Sharma P (2022) Microbial communication during bioremediation of polyaromatic hydrocarbons. Syst Microbiol Biomanuf 437:1–15. https://doi.org/10.1007/s43393-021-00072-6

    Article  CAS  Google Scholar 

  • Sharma P, Kumar S (2021) Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: RECENT advances. Biores Technol 339:125589

    Article  CAS  Google Scholar 

  • Sharma P, Rath SK (2021) Potential applications of fungi in the remediation of toxic effluents from pulp and paper industries. In: Fungi bio-prospects in sustainable agriculture, environment and nanotechnology. Academic Press, USA, pp 193–211

    Chapter  Google Scholar 

  • Sharma P, Singh SP (2021) Advances in microbial applications in safeguarding of plant health: challenges and future perspective. Microbiological activity for soil and plant health management. Springer, Singapore, pp 547–562

    Chapter  Google Scholar 

  • Sharma P, Singh SP (2022) Identification and profiling of microbial community from industrial sludge. Arch Microbiol 204(4):1–9

    Article  CAS  Google Scholar 

  • Sharma D, Tiwari M, Lakhwani D, Tripathi RD, Trivedi PK (2015) Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics 7(1):174–187

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell Environ 39(5):1112–1126

    Article  CAS  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Landi M (2020a) The role of salicylic acid in plants exposed to heavy metals. Molecules 25(3):540

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma P, Tripath S, Chandra R (2020b) Environmental impacts of pulp paper mill effluent: potential source of chromosomal aberration and phytotoxicity. Int J Appl Environ Sci 15(1):77–92

    Google Scholar 

  • Sharma P, Tripathi S, Chandra R (2020c) Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon 6(7):e04559

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Purchase D, Chandra R (2021a) Residual pollutants in treated pulp paper mill wastewater and their phytotoxicity and cytotoxicity in Allium cepa. Environ Geochem Health 43(5):2143–2164

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Tripathi S, Chandra R (2021b) Highly efficient phytoremediation potential of metal and metalloids from the pulp paper industry waste employing Eclipta alba (L) and Alternanthera philoxeroide (L): biosorption and pollution reduction. Biores Technol 319:124147

    Article  CAS  Google Scholar 

  • Sharma P, Tripathi S, Chandra R (2021c) Metagenomic analysis for profiling of microbial communities and tolerance in metal-polluted pulp and paper industry wastewater. Biores Technol 324:124681

    Article  CAS  Google Scholar 

  • Sharma P, Tripathi S, Chaturvedi P, Chaurasia D, Chandra R (2021d) Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: potential application in wastewater treatment. Bioresour Technol 320:124353

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Tripathi S, Purchase D, Chandra R (2021e) Integrating phytoremediation into treatment of pulp and paper industry wastewater: field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy. J Environ Chem Eng 9(4):105547

    Article  CAS  Google Scholar 

  • Sharma P, Tripathi S, Vadakedath N, Chandra R (2021f) In-situ toxicity assessment of pulp and paper industry wastewater on Trigonella foenum-graecum L: potential source of cytotoxicity and chromosomal damage. Environ Technol Innov 21:101251

    Article  CAS  Google Scholar 

  • Sharma P, Bano A, Singh SP, Dubey NK, Chandra R, Iqbal HM (2022) Recent advancements in microbial-assisted remediation strategies for toxiccontaminants. Cleaner Chem Eng 2:100020

    Article  Google Scholar 

  • Sheetal KR, Singh SD, Anand A, Prasad S (2016) Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian J Plant Physiol 21(2):219–223

    Article  CAS  Google Scholar 

  • Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Deshmukh R (2020) Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol Plant 168(2):437–455

    CAS  PubMed  Google Scholar 

  • Singh R, Misra AN, Sharma P (2021) Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis. Protoplasma 258(2):391–401

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Verma T, Gaur R (2013) Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. Afr J Biotechnol 12:1–13

    CAS  Google Scholar 

  • Smeets K, Opdenakker K, Remans T, Forzani C, Hirt H, Vangronsveld J, Cuypers A (2013) The role of the kinase OXI1 in cadmium-and copper-induced molecular responses in A rabidopsis thaliana. Plant, Cell Environ 36(6):1228–1238

    Article  CAS  Google Scholar 

  • Smeets K, Opdenakker K, Remans T, Van Sanden S, Van Belleghem F, Semane B, Horemans N, Guisez Y, VangronsveldJ Jaco, Cuypers A (2009) Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollutioncontext. J Plant Physiol 166(18):1982–1992

    Article  CAS  PubMed  Google Scholar 

  • Sobkowiak R, Deckert J (2003) Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol Biochem 41(8):767–772

    Article  CAS  Google Scholar 

  • Sterckeman T, Redjala T, Morel JL (2011) Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. Environ Exp Bot 74:131–139

    Article  CAS  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    Article  CAS  PubMed  Google Scholar 

  • Świeżawska-Boniecka B, Duszyn M, Kwiatkowski M, Szmidt-Jaworska A, Jaworski K (2021) Cross talk between cyclic nucleotides and calcium signaling pathways in plants–achievements and prospects. Front Plant Sci 12:190

    Article  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormonepriming: regulator for heavy metal stress in plants. J Plant GrowthRegul 38(2):739–752

    Article  CAS  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5(11):1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taştan BE, Ertuğrul S, Dönmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Biores Technol 101(3):870–876

    Article  CAS  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanisticmodel of plant heavy metal tolerance. Biometals 25(3):489–505

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:1–12

    Article  Google Scholar 

  • Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150:205–224

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28(3):281–291

    Article  CAS  Google Scholar 

  • Tripathi S, Sharma P, Purchase D, Chandra R (2021a) Distillery wastewater detoxification and management through phytoremediation employing Ricinus communis L. Biores Technol 333:125192

    Article  CAS  Google Scholar 

  • Tripathi S, Sharma P, Singh K, Purchase D, Chandra R (2021b) Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste. Environ Technol Innov 22:101434

    Article  CAS  Google Scholar 

  • van de Mortel JE, Schat H, Moerland PD, Van Themaat EVL, Van Der Ent SJOERD, Blankestijn H, Aarts MG (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspicaerulescens. Plant, Cell Environ 31(3):301–324

    Article  CAS  Google Scholar 

  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369

    Article  Google Scholar 

  • Vitti A, Nuzzaci M, Scopa A, Tataranni G, Remans T, Vangronsveld J, Sofo A (2013) Auxin and cytokinin metabolism and root morphological modifications in Arabidopsis thaliana seedlings infected with cucumber mosaic virus (CMV) or exposed to cadmium. Int J Mol Sci 14(4):6889–6902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyermann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–11

    Article  CAS  PubMed  Google Scholar 

  • Wallace DR, Taalab YM, Heinze S, TaribaLovaković B, Pizent A, Renieri E, Buha Djordjevic A (2020) Toxic-metal-induced alteration in miRNA expression profile as a proposed mechanism for disease development. Cells 9(4):901

    Article  CAS  PubMed Central  Google Scholar 

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP genefrom Tamarix hispida mediates physiological responses to salt stress in tobaccoplants. J Plant physiol 167(3):222–230

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Chen L, Chen S, Ma Y (2012) Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf 79:48–54

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Ren X, Huang B, Wang G, Zhou P, An Y (2016) Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots. Sci Rep 6(1):1–13

    CAS  Google Scholar 

  • Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Chen QF (2017) OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci 8:1868

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  PubMed Central  Google Scholar 

  • Wang L, Yin Y, Jing X, Wang M, Zhao M, Yu J, Li YF (2021) Profiling of MicroRNAs involved in Mepiquat chloride-mediated inhibition of internode elongation in cotton (Gossypium hirsutum L.) seedlings. Front Plant Sci 12:255

    CAS  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptomeanalysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerantfacultative metallophyte Arabidopsis halleri. Plant Cell Environ 29(5):950–963

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Zhang Y, Han L, Guan Z, Chai T (2008) A novel WRKY transcriptionalfactor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27(4):795–803

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Nolan TM, Jiang H, Yin Y (2019) AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci 10:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61(2):423–437

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21(1):347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60(1):107–124

    Article  PubMed  CAS  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58(3):659–671

    Article  CAS  PubMed  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant, Cell Environ 39(1):120–135

    Article  CAS  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54(5):766–778

    Article  CAS  PubMed  Google Scholar 

  • Zayneb C, Bassem K, Zeineb K, Grubb CD, Noureddine D, Hafedh M, Amine E (2015) Physiological responses of fenugreek seedlings and plants treated with cadmium. Environ Sci Pollut Res Int 22(14):10679–10689

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Wang K, Zhang SY, Ren J, Liu T, Wang X (2014) Crosstalk between ABA, auxin, MAPK signaling, and the cell cycle in cadmium-stressed rice seedlings. Acta Physiol Plant 36(7):1879–1892

    Article  CAS  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant, Cell Environ 35(1):86–99

    Article  Google Scholar 

  • Zurbriggen MD, Hajirezaei MR, Carrillo N (2010) Engineering the future. Development of transgenic plants with enhanced tolerance to adverse environments. Biotechnol Genetic Eng Rev 27(1):33–56

    Article  CAS  Google Scholar 

Download references

Funding

This work received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

PS: conceptualization, writing-original draft preparation, Editing and reviewing. AB: writing-original draft preparation; Editing and reviewing. AKN: editing and reviewing. SS: editing and reviewing. SV: editing and reviewing. SPS: conceptualization, writing-original draft preparation, and reviewing of the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Surendra Pratap Singh.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Bano, A., Nadda, A.K. et al. Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 204, 410 (2022). https://doi.org/10.1007/s00203-022-02978-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-02978-8

Keywords

Navigation