Skip to main content
Log in

Succinate irrepressible periplasmic glucose dehydrogenase of Rhizobium sp. Td3 and SN1 contributes to its phosphate solubilization ability

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Td3 and SN1 are phosphate-solubilizing nodule rhizobia of Cajanus cajan and Sesbania rostrata, respectively. They solubilized 423 µg/mL and 428 µg/mL phosphate from tricalcium phosphate through the secretion of 19.2 mM and 29.6 mM gluconic acid, respectively, when grown in 100 mM glucose. However, 90% and 80% reduction in phosphate solubilization coupled to the production of 40 mM (Td3) and 28.2 mM (SN1) gluconic acid was observed when the two isolates were grown in 50 mM succinate + 50 mM glucose. Our results illustrate the role of succinate irrepressible glucose dehydrogenase (gcd) in phosphate solubilization and the role of succinate: proton symport in succinate-mediated repression of phosphate solubilization in these rhizobia. Calcium ion supplementation reduced the 88% and 72% repression in P solubilization to 18% and 9% in Td3 and SN1, respectively, coupled to a reduction in media pH from 6.8 to 4.9 in Td3 and 6.3 to 4.8 in SN1. Hence, repression had no genetic basis and is purely due to the biochemical interplay of protons and other cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol Fertil Soils 18:216–218

    Article  CAS  Google Scholar 

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Meth Enzymol 8:115–118

    Article  CAS  Google Scholar 

  • Arias AC, Cervenansky A, Gardiol A, Drets MG (1979) Phosphoglucose isomerase mutant of R. meliloti. J Bacteriol 160(3):1027–1030

    Google Scholar 

  • Boiardi JL, Galar ML, Neijssel OM (1996) PQQ- linked extracellular glucose oxidation and chemotaxis towards this cofactor in rhizobia. FEMS Microbiol Lett 140:179–184

    Article  CAS  Google Scholar 

  • Cappuccino JC, Sherman N (1992) In: Brick JM, Bostock RM, Silverstone SE (eds) Microbiology: a laboratory manual, 3rd edn Benjamin/cummings Pub Co, New York, pp 125–1792

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Collier DN, Hager PW, Phibbs PV (1996) Catabolite repression control in the Pseudomonads. Res Microbiol 147:435–594

    Article  Google Scholar 

  • Engelen AJ, Heeft FC, Randsdorp PH, Smit EL (1994) Simple and rapid determination of phytase activity. J AOAC Int 77(3):760–764

    CAS  PubMed  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Finan TM, Wood JM, Jordan DC (1981) Succinate transport in Rhizobium leguminosarum. J Bacteriol 148:192–202

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  CAS  PubMed  Google Scholar 

  • Groeneveld M, Rudd GJ, Weme DO, Duurkens RH, Slotboom DJ (2010) Biochemical characterization on the C4- dicarboxylate transporter DctA from Bacillus subtilis. J Bacteriol 192:2900–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutowski SJ, Rosenberg H (1975) Succinate uptake and related proton movements in Escherichia coli K12. Biochem J 152(3):647–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar P, Naresh G, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Naresh G, Parekh LJ, Poole PS (2002) Role of soil micro-organisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattachayya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Irigoyen JJ, Diaz MS, Emerich DW (1990) Carbon metabolism enzymes of Rhizobium meliloti cultures and bacteroides and their distribution within alfalfa nodules. Appl Environ Microbiol 56:2587–2589

    PubMed  PubMed Central  Google Scholar 

  • Iyer B, Rajput MS, Rajkumar S (2017) Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth. Microbiol Res 202:43–50

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol 36(2):185–189

    CAS  PubMed  Google Scholar 

  • Kumar GK, Ram MR (2014) Phosphate solubilizing Rhizobia isolated from Vigna trilobata. Amer J Microbiol Res 2(3):105–109

    Article  Google Scholar 

  • Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of Gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour Technol 97:957–960

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol regent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Maheshwar NU, Sathiyavani G (2012) Solubilization of phosphate by Bacillus spp., from groundnut rhizosphere (Arachis hypogaea L). J Chem Pharm Res 4(8):4007–4011

    Google Scholar 

  • Mandal NC, Chakrabartty PK (1993) Succinate mediated catabolite repression of enzymes of glucose metabolism in root nodule bacteria. Curr Microbiol 26:247–251

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moreno R, Ruiz-Manzano A, Yuste L, Rojo F (2007) The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Mol Microbiol 64:665–675

    Article  CAS  PubMed  Google Scholar 

  • Nakhro N, Dkhar MS (2010) Impact of organic and inorganic fertilizers on microbial populations and biomass carbon in paddy field soil. J Agron 9(3):102–110

    Article  Google Scholar 

  • Patel DK, Murawala P, Archana G, Naresh G (2011) Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting fluorescent pseudomonads. Bioresour Technol 102:3055–3061

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital capacity of source microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Quay SC, Friedman SB, Eisenberg RC (1972) Gluconate regulation of glucose catabolism in Pseudomonas fluorescens. J Bacteriol 112:291–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput MS, Naresh G, Rajkumar S (2013) Repression of oxalic acid mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Arch Microbiol 195:81–88

    Article  CAS  PubMed  Google Scholar 

  • Romanov VI, Hernandez-Lucas I, Martinez RE (1994) Carbon metabolism enzymes of Rhizobium tropici cultures and bacteroides. Appl Environ Microbiol 60:2339–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan VS, Madhaiyam M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic plant growth promoting bacterium Gluconobacter diazotrophocus. Chemosphere 66(9):1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Saroso S, Dilworth MJ, Glenn AR (1986) The use of activities of carbon catabolic enzymes as a probe for the carbon nutrition of snakebean nodule bacteroids. J Gen Microbiol 132:243–249

    CAS  Google Scholar 

  • Savci S (2012) Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1:287–292

    Article  CAS  Google Scholar 

  • Sridevi M, Mallaih KV (2009) Phosphate solubilization by Rhizobium strains. Indian J Microbiol 49:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ucker DS, Singer ER (1978) Catabolite repression like phenomenon in Rhizobium meliloti. J Bac 136:1197–1200

    CAS  Google Scholar 

  • Van Schie BJ, De Mooy OH, Linton JD, Van Dijken JP, Kuenen JG (1987) PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J Gen Microbiol 133:867–875

    Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of Zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant physiol 142:731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young SC, Park RD, Kim YW, Hwangbo H, Jung WJ, Shu JS et al (2003) PQQ-dependent organic acid production and effect on common bean growth by Rhizobium tropici CIAT 899. J Microbiol Biotechnol 13(6):955–959

    Google Scholar 

  • Yurgel SN, Kahn ML (2004) Dicarboxylate transport by rhizobia. FEMS Microbiol Rev 28(4):489–501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Department of Science and Technology (DST), Government of India for providing INSPIRE fellowship to Bhagya Iyer (IF130895) and Nirma Education and Research Foundation (NERF), Nirma University for providing basic infrastructure for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Rajkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jorge Membrillo-Hernández.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 197 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, B., Rajkumar, S. Succinate irrepressible periplasmic glucose dehydrogenase of Rhizobium sp. Td3 and SN1 contributes to its phosphate solubilization ability. Arch Microbiol 201, 649–659 (2019). https://doi.org/10.1007/s00203-019-01630-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01630-2

Keywords

Navigation