Skip to main content
Log in

Transcriptome and metabolome analysis of Pichia stipitis to three representative lignocellulosic inhibitors

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

During the bioconversion of xylose to ethanol, Pichia stipitis cells are often inhibited by substances generated in the lignocellulosic hydrolysate. However, the response mechanism of P. stipitis to inhibitors has not been completely understood till date. With this aim, integrated transcriptomic and metabolomic analyses were performed on P. stipitis to investigate the interactive effects of three representative inhibitors [vanillin, 5-hydroxymethylfurfural (5-HMF), and acetic acid] present in lignocellulosic hydrolysates. The genes involved in carbohydrate metabolism were observed to significantly down-regulated in the presence of the three combined inhibitors in both lag and middle exponential phases. In addition, inhibitor addition induced amino acid metabolism (e.g., glutamine and asparagine syntheses), since the yeast cells required more amino acids in stressful conditions. The metabolomic analysis yielded similar results, particularly those related with the analysis of metabolic biomarkers including fatty acids, amino acids, and sugars. 70 intracellular metabolites were detected by gas chromatography coupled with mass spectrometry (GC–MS), and samples from different phases were clearly separated by principal component analysis (PCA). The large amount of specific responsive genes and metabolites highlighted the complex regulatory mechanisms involved in the fermentation process in the presence of the three combined inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GC–MS:

Gas chromatography coupled with mass spectrometry

PCA:

Principal component analysis

5-HMF:

5-Hydroxymethylfurfural

MSTFA:

N-methyl-N-(trimethylsilyl)trifluoroacetamide

HPLC:

High-performance liquid chromatography

OD:

Optical density

IS:

Internal standard

PPP:

Pentose phosphate pathway

PI:

Phosphatidylinositol.

References

  • Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 41(11):2333–2336

    Article  CAS  Google Scholar 

  • Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioeng 110(1):18–25

    Article  CAS  PubMed  Google Scholar 

  • Caridi A (2002) Protective agents used to reverse the metabolic changes induced in wine yeasts by concomitant osmotic and thermal stress. Lett Appl Microbiol 35(2):98–101

    Article  CAS  PubMed  Google Scholar 

  • Ding MZ, Cheng JS, Xiao WH, Qiao B, Yuan YJ (2009a) Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS. Metabolomics 5:229–238

    Article  CAS  Google Scholar 

  • Ding MZ, Tian HC, Cheng JS, Yuan YJ (2009b) Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol 144(4):279–286

    Article  CAS  PubMed  Google Scholar 

  • Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15(10):647–653

    Article  CAS  PubMed  Google Scholar 

  • Flores CL, Rodriguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24(4):507–529

    CAS  PubMed  Google Scholar 

  • Hao XC, Yang XS, Wan P, Tian S (2013) Comparative proteomic analysis of a new adaptive Pichia Stipitis strain to furfural, a lignocellulosic inhibitory compound. Biotechnol Biofuels 6(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25(3):319–326

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Zhou X, Xu Y, Zhu J, Yu S (2016) Degradation profiles of non-lignin constituents of corn stover from dilute sulfuric acid pretreatment. J Wood Chem Technol 36(3):192–204

    Article  CAS  Google Scholar 

  • Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH (2013) Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal Chem 85(4):2167–2176

    Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh, Zhang YHP (2011) Bioethanol production from pentose sugars: Current status and future prospects. Renew Sust Energ Rev 15(9):4950–4962

    Article  CAS  Google Scholar 

  • Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biot 86:1915–1924

    Article  CAS  Google Scholar 

  • Li B, Cheng J, Ding M, Yuan Y (2010) Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol 148(4):194–203

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ma ML, Luo S, Zhang RM, Han P, Hu W (2012) Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Int J Biochem Cell B 44(7):1087–1096

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust 38(4):449–467

    Article  CAS  Google Scholar 

  • Mannazzu I, Angelozzi D, Belviso S, Budroni M, Farris GA, Goffrini P, Lodi T, Marzona M, Bardi L (2008) Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. Int J Food Microbiol 121(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9:151–161

    Article  CAS  PubMed  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxitcation. Bioresour Technol 74(1):17–24

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 77(1):25–33

    Article  Google Scholar 

  • Panagiotou G, Villas-Bôas SG, Christakopoulos P, Nielsen J, Olsson L (2005) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115(4):425–434

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37(1):19–27

    Article  CAS  Google Scholar 

  • Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1. EMBO J 13(18):4382–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biot 81:211–223

    Article  CAS  Google Scholar 

  • Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microb 71(12):8656–8662

    Article  CAS  Google Scholar 

  • Tsui MM, York JD (2010) Roles of inositol phosphates and inositol pyrophosphates in development, cell signaline and nuclear processes. Adv Enzyme Regul 50(1):324–337

    Article  PubMed  Google Scholar 

  • Zhu J, Yang J, Zhu Y, Zhang L, Yong Q, Li X, Yu S (2014) Cause analysis of the effects of acid-catalyzed steam-exploded corn stover prehydrolyzate on ethanol fermentation by Pichia stipitis CBS 5776. Bioprocess Biosyst Eng 37(11):2215–2222

    Article  CAS  PubMed  Google Scholar 

  • Zulak KG, Weljie AM, Vogel HJ, Facchini PJ (2008) Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biol 5(8):1–19

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (2017YFD0601001), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Oversea Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Zhu.

Ethics declarations

Conflict of interest

The authors declare that no conflicting financial interests exist.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 7919 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wu, L., Zhu, J. et al. Transcriptome and metabolome analysis of Pichia stipitis to three representative lignocellulosic inhibitors. Arch Microbiol 201, 581–589 (2019). https://doi.org/10.1007/s00203-018-1600-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1600-5

Keywords

Navigation