Skip to main content
Log in

Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amemiya T (1985) Advanced econometrics. Harvard University Press, Cambridge

    Google Scholar 

  • Badger MR (1980) Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys 201:247–254

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Bek EJ (2008) Multiple RubisCO forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59:1525–1541

    Article  CAS  PubMed  Google Scholar 

  • Badger MR et al (1998) The diversity and coevolution of RubisCO, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Battchikova N, Aro E (2007) Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. Physiol Plant 131:22–32

    Article  CAS  PubMed  Google Scholar 

  • Childress JJ et al (1993) Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2. Nature 362:147–169

    Article  CAS  Google Scholar 

  • Dobrinski KP, Longo DL, Scott KM (2005) A hydrothermal vent chemolithoautotroph with a carbon concentrating mechanism. J Bacteriol 187:5761–5766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dobrinski KP, Boller AJ, Scott KM (2010) Expression and function of four carbonic anhydrase homologs in the deep-sea chemolithoautotroph Thiomicrospira crunogena. Appl Environ Microb 76:3561–3567

    Article  CAS  Google Scholar 

  • Dobrinski KP, Enkemann SA, Yoder SJ, Haller E, Scott KM (2012) Transcription response of the sulfur chemolithoautotroph Thiomicrospira crunogena to dissolved inorganic carbon limitation. J Bacteriol 194:2074–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dou Z, Heinhorst S, Williams E, Murin E, Shively J, Cannon G (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283:10377–10384

    Article  CAS  PubMed  Google Scholar 

  • Eisenhut M, Schubert EVWLJH, Bauwe BWIH (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144:1946–1959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Espie GS, Kandasamy RA (1994) Monensin inhibition of Na+-dependent HCO3 transport distinguishes it from Na+-independent HCO3 transport and provides evidence for Na+/HCO3 symport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 104:1419–1428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, Hammond D (1997) Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external P-CO2 and upon proton-equivalent ion transport by the worm. J Exp Biol 200:883–896

    CAS  PubMed  Google Scholar 

  • Hernandez JM, Baker SH, Lorbach SC, Shively JM, Tabita FR (1996) Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J Bacteriol 178:347–356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Horken K, Tabita FR (1999) Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities. Arch Biochem Biophys 361:183–194

    Article  CAS  PubMed  Google Scholar 

  • Jannasch H, Wirsen C, Nelson D, Robertson L (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424

    Article  CAS  Google Scholar 

  • Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field. Deep Sea Res 35:1723–1744

    Article  Google Scholar 

  • Larimer FW, Soper TS (1993) Overproduction of Anabaena 7120 ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Gene 126:85–92

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Price MRBGD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp PCC7942. Mol Microbiol 43:425–435

    Article  CAS  PubMed  Google Scholar 

  • Marcus Y, Altman-Gueta H, Wolff Y, Gurevitz M (2011) Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. J Exp Bot 62:4173–4182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsson K, Keis S, Morgan H, Dimroth P, Cook G (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109:47–57

    Article  CAS  PubMed  Google Scholar 

  • Price G, Woodger F, Badger M, Howitt S, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101:18228–18233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2009) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  Google Scholar 

  • Rauhamaki V, Bloch DA, Wikstrom M (2012) Mechanistic stoichiometry of proton translocation by cytochrome cbb(3). Proc Natl Acad Sci USA 109:7286–7291. doi:10.1073/pnas.1202151109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucl Acids Res 35:D274–D279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rotsaert F, Ding M, Trumpower B (2008) Differential efficacy of inhibition of mitochondrial and bacterial cytochrome bc1 complexes by center N inhibitors antimycin, ilicicolinH and funiculosin. Biochim Biophys Acta 1777:211–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rottenberg H (1979) The measurement of membrane potential and ΔpH in cells, organelles, and vesicles. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Elsevier, New York, pp 547–569

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scott KM, Schwedock J, Schrag DP, Cavanaugh CM (2004) Influence of form IA RubisCO and environmental dissolved inorganic carbon on the δ13C of the clam-bacterial chemoautotrophic symbiosis Solemya velum. Environ Microbiol 6:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Scott KM et al (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena. PLoS Biol 4:1–17

    Article  Google Scholar 

  • Scott KM, Henn-Sax M, Longo D, Cavanaugh CM (2007) Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol Oceanogr 52:2199–2204

    Article  CAS  Google Scholar 

  • Shibata M et al (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci 98:11789–11794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shibata M et al (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. J Biol Chem 277:18658–18664

    Article  CAS  PubMed  Google Scholar 

  • Sinegina L, Wikstrom M, Verkhovsky M, Verkhovskaya M (2005) Activation of isolated NADH:ubiquinone reductase I (complex I) from Escherichia coli by detergent and phospholipids. Recovery of ubiquinone reductase activity and changes in EPR signals of iron-sulfur clusters. Biochemistry 44:8500–8506

    Article  CAS  PubMed  Google Scholar 

  • Toyabe S, Watanabe-Nakayama T, Okamoto T, Kudo S, Muneyuki E (2011) Thermodynamic efficiency and mechanochemical coupling of F-1-ATPase. Proc Natl Acad Sci USA 108:17951–17956. doi:10.1073/pnas.1106787108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trumpower B, Edwards C (1979) Purification of a reconstitutively active iron-sulfur protein (oxidation factor) from succinate cytochrome c reductase complex of bovine heart mitochondria. J Biol Chem 254:8697–8706

    CAS  PubMed  Google Scholar 

  • Viale AM, Kobayashi H, Akazawa T (1990) Distinct properties of Escherichia coli products of plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase directed by two sets of genes from the photosynthetic bacterium Chromatium vinosum. J Biol Chem 265:18386–18392

    CAS  PubMed  Google Scholar 

  • Walker AFZENINJ, Smith AASGM (2009) Mixed effects models and extensions in R. Springer, New York

    Google Scholar 

  • Wang Y, Obungu V, Beattie D (1998) Dicyclohexylcarbodiimide inhibits proton pumping in ubiquinol:cytochrome c oxidoreductase of Rhodobacter sphaeroides and binds to aspartate-187 of cytochrome b1. Arch Biochem Biophys 352:193–198

    Article  CAS  PubMed  Google Scholar 

  • Yagi T (1987) Inhibition of NADH-ubiquinone reductase activity by N, N’-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms. Biochemistry 26:2822–2828

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Kitaoka S (1985) Correct pK values for dissociation constant of carbonic acid lower the reported Km values of ribulose bisphosphate carboxylase to half. Presentation of a nomograph and an equation for determining the pK values. Biochem Biophys Res Commun 131:1075–1079

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are tremendously thankful to the National Science Foundation for their support of this project (NSF-MCB-0643713 to K.M.S.). We would also like to thank Gordon Cannon and Sabine Heinhorst for helpful discussions and for the use of their facilities for carboxysome studies, and the anonymous reviewers for their insightful suggestions, which improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Kathleen M. Scott.

Additional information

Communicated by Erko Stackebrandt.

USF MCB4404L 2012 are: P. Wanjugi, M. Abdel-Rahim, M. B. Alak, L. J. Astatrjan, V. Bihary, F. Blazekovic, C. Cabrera, G. Camper, T. Chase, J. Dox, A. Echevarria, Q. A. Fisher, C. Georgeades, I. E. Heller, A. N. Hewlett, A. E. Justus, M. Kemp, M. Kondoff, J. P. Martin, E. McClenthan, G. R. Nicolas, J. Paoletti, S. Schuler, M. Skopis, S. R. Subar, E. R. Trebour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menning, K.J., Menon, B.B., Fox, G. et al. Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation. Arch Microbiol 198, 149–159 (2016). https://doi.org/10.1007/s00203-015-1172-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1172-6

Keywords

Navigation