Skip to main content
Log in

Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-staining negative, aerobic, non-motile, non-flagellate, yellow-pigmented, rod-shaped bacterial strain, designated strain DCY67T, was isolated from ginseng field in Republic of Korea. Strain DCY67T contained β-glucosidase activity which converts ginsenoside Rb1 to compound K. Optimum growth of DCY67T occurred at 30 °C and pH 6.0–6.5. Analysis of the 16S rRNA gene sequences revealed that strain DCY67T belonged to the family Flavobacteriaceae and was most closely related to Chryseobacterium ginsenosidimutans THG 15T (97.5 %). The genomic DNA G+C content was 36.1 mol%. The predominant quinones were MK-6 (90.9 %) and MK-7 (9.15 %). The major fatty acids were iso-C15:0, summed feature 3 (containing C16:1 ω7c and/or C16:1 ω6c) and iso-C17:0 3-OH. On the basis of these phenotypic, genotypic and chemotaxonomic studies, strain DCY67T represents a novel species of the genus Chryseobacterium, for which, name Chryseobacterium yeoncheonense sp. nov. proposed the type strain is DCY67T (=KCTC 32090T = JCM 18516T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251

    Article  PubMed  CAS  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J ClinPathol 45:493–496

    CAS  Google Scholar 

  • Bernardet J-F, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    Article  PubMed  CAS  Google Scholar 

  • Bernardet J-F, Hugo C, Bruun B (2006) The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 638–676

    Google Scholar 

  • Bernardet J-F, Hugo C, Bruun B (2010) Genus X. Chryseobacterium Vandamme et al. 1994a. In Whitman W (ed) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. The Williams & Wilkins Co., Baltimore. Springer, New York, pp 180–196

  • Busse HJ, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8

    Article  CAS  Google Scholar 

  • Busse H-J, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708

    Article  CAS  Google Scholar 

  • Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C.A. Meyer. Acta Pharmacol Sin 29:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466

    PubMed  CAS  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  PubMed  CAS  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics (society for applied bacteriology technical series no. 20). Academic Press, London, pp 267–287

  • Cowan ST, Steel KJ (1974) Manual for the identification of medical bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • de Beer H, Hugo CJ, Jooste PJ, Willems A, Vancanneyt M, Coenye T, Vandamme P (2005) Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken processing plant. Int J Syst Evol Microbiol 55:2149–2153

    Article  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid hybridization in micro dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacterial 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hantsis-Zacharov E, Senderovich Y, Halpern M (2008) Chryseobacterium bovis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 58:1024–1028

    Article  PubMed  CAS  Google Scholar 

  • Ilardi P, Fernández J, Avendaño-Herrera R (2009) Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59:3001–3005

    Article  PubMed  CAS  Google Scholar 

  • Im WT, Yang JE, Kim SY, Yi TH (2011) Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhusvernicifera-cultivated field. Int J Syst Evol Microbiol 61:1430–1435

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Dreyer U, Neef A, Dott W, Busse H-J (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97

    Article  PubMed  Google Scholar 

  • Kämpfer P, Arun AB, Young C-C, Chen W-M, Sridhar KR, Rekha PD (2010) Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60:1765–1769

    Article  PubMed  Google Scholar 

  • Kim KK, Bae HS, Schumann P, Lee ST (2005a) Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kim M-K, Lim JH, Park HY, Lee ST (2005b) Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Im W-T, Ohta H, Lee M, Lee S-T (2005c) Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43:152–157

    PubMed  CAS  Google Scholar 

  • Kim MK, Lee JW, Lee KY, Yang DC (2005d) Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 43:456–462

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular 9 evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–176

    Google Scholar 

  • Lee SS (2007) Korean ginseng (ginseng cultivation), Korean ginseng and T. Research institute. 18–40

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, ODonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nguyen NL, Kim YJ, Hoang VA, Min JW, Liang ZQ, Yang DC (2013) Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63:855–860

    Article  PubMed  CAS  Google Scholar 

  • Park JH (2004) Sun ginseng: a new processed ginseng with fortified activity. Food Ind Nutr 9:23–27

    Google Scholar 

  • Park MS, Jung SR, Lee KH, Lee MS, Do JO, Kim SB, Bae KS (2006) Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438

    Article  PubMed  CAS  Google Scholar 

  • Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87:9–19

    Article  PubMed  CAS  Google Scholar 

  • Quan Z-X, Kim KK, Kim M-K, Jin L, Lee S-T (2007) Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57:141–145

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour: joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, De: MIDI Inc

  • Shimomura K, Kaji S, Hiraishi A (2005) Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55:1903–1906

    Article  PubMed  CAS  Google Scholar 

  • Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM, Mason CT, Newman JD (2003) Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 61:2162–2166

    Article  Google Scholar 

  • Sun H, Wang HT, Kwon WS, Kim YJ, In JG, Yang DC (2011) A simple and rapid technique for the authentication of the ginseng cultivar, Yunpoong, using an SNP marker in a large sample of ginseng leaves. Gene 487:75–79

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831

    Article  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weon HY, Kim B-Y, Yoo S-H, Kwon S-W, Cho Y-H, Go SJ, Stackebrandt E (2006) Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Yassin AF, Hupfer H, Siering C, Busse HJ (2010) Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 60:1993–1998

    Article  PubMed  CAS  Google Scholar 

  • Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Wang J, Li J, Fu L, Gao J, Du X, Bi H, Zhou Y, Tai G (2009) Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 36:721–726

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (#20110015122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeon-Ju Kim or Deok-Chun Yang.

Additional information

Communicated by Erko Stackebrandt.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain DCY67T is JX141782.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 571 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoang, VA., Kim, YJ., Nguyen, N.L. et al. Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Arch Microbiol 195, 463–471 (2013). https://doi.org/10.1007/s00203-013-0898-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0898-2

Keywords

Navigation