Skip to main content
Log in

Chryseobacterium ginsengiterrae sp. nov., with Beta-Glucosidase Activity Isolated from Soil of a Ginseng Field

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The isolated Chryseobacterium ginsengiterrae sp. nov DCY68T was found to be Gram-negative, aerobic, non-motile, non-flagellate and rod-shaped. Their size was approximately 0.40–0.46 × 1.0–1.27 μm. The colonies were yellow-pigmented, convex, circular and 0.5–1.3 mm in diameter when grown on R2A agar for 2 days. DNA, esculin, skim milk, gelatine, starch, Tween 20, and Tween 80 were hydrolyzed, but not cellulose. The cells grew on R2A, TSA, and NA but not on MacConkey agars. Growth occured at 4–33 °C (optimum, 30 °C), at pH 5.0–8.0 (optimum, pH 6.5), and 0–2.5% NaCl. Nitrate was not reduced to nitrite. Oxidase and catalase activity were positive. Strain DCY68T contained β–glucosidase activity in which ginsenoside Rb1 was enzymatically converted to ginsenoside F2. Analysis of the16S rRNA gene sequence revealed that strain C. ginsengiterrae sp. nov DCY68T belonged to the family Flavobacteriaceae and was most closely related to C. limigenitum SUR2T (97.4%). The genomic DNA G+C content was 42.0 mol%. The predominant quinones were MK-6 (74.5%) and MK-7 (25.5%). The major fatty acids were iso-C15:0, summed feature 3 (containing C16:1 ω7c and/or C16:1 ω6c) and iso-C17:0 3-OH. On the basis of these phenotypic, genotypic and chemotaxonomic studies, strain DCY68T represents a novel species of the genus Chryseobacterium, for which name C. ginsengiterrae sp. nov. is proposed. The type strain is DCY68T (=KCTC 32089T = JCM 18517T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251

    Article  CAS  PubMed  Google Scholar 

  2. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J ClinPathol 45:493–496

    CAS  Google Scholar 

  3. Bernardet J-F, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  4. Bernardet J-F, Hugo C, Bruun B (2006) The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 638–676

    Chapter  Google Scholar 

  5. Bernardet J-F, Hugo C, Bruun B (2010) Genus X. Chryseobacterium Vandamme et al. 1994a. In: Whitman W (ed.), Bergey’s manual of systematic bacteriology, 2nd edn, vol. 4, Edited by The Williams & Wilkins Co., Baltimore. Springer, New York, pp. 180–196

  6. Busse H-J, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708

    Article  CAS  Google Scholar 

  7. Busse HJ, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8

    Article  CAS  Google Scholar 

  8. Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C.A Meyer. Acta Pharmacol Sin 29:1109–1118

    Article  CAS  PubMed  Google Scholar 

  9. Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In:Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics (Society for Applied Bacteriology Technical Series no. 20), Academic Press, London, pp. 267–287

  11. Cowan ST, Steel KJ (1974) Manual for the identification of medical bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  12. de Beer H, Hugo CJ, Jooste PJ, Willems A, Vancanneyt M, Coenye T, Vandamme P (2005) Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken processing plant. Int J Syst Evol Microbiol 55:2149–2153

    Article  PubMed  Google Scholar 

  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids SympSer 41:95–98

    CAS  Google Scholar 

  15. Hantsis-Zacharov E, Senderovich Y, Halpern M (2008) Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 58:1024–1028

    Article  CAS  PubMed  Google Scholar 

  16. Hoang VA, Kim YJ, Nguyen NL, Yang DC (2013) Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Arch Microbiol 195:463–471

    Article  CAS  PubMed  Google Scholar 

  17. Ilardi P, Fernández J, Avendaño-Herrera R (2009) Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59:3001–3005

    Article  CAS  PubMed  Google Scholar 

  18. Kämpfer P, Dreyer U, Neef A, Dott W, Busse H-J (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97

    Article  PubMed  Google Scholar 

  19. Kämpfer P, Arun AB, Young C-C, Chen W-M, Sridhar KR, Rekha PD (2010) Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60:1765–1769

    Article  PubMed  Google Scholar 

  20. Kämpfer P, Trček J, Skok B, Šorgo A, Glaeser SP (2015) Chryseobacterium limigenitum sp. nov., isolated from dehydrated sludge. Antonie Van Leeuwenhoek 107(6):1633–1638

    Article  PubMed  Google Scholar 

  21. Kim KK, Bae HS, Schumann P, Lee ST (2005) Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138

    Article  CAS  PubMed  Google Scholar 

  22. Kim KK, Kim M-K, Lim JH, Park HY, Lee ST (2005) Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287–1293

    Article  CAS  PubMed  Google Scholar 

  23. Kim KK, Lee KC, Oh HM, Lee JS (2008) Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58:533–537

    Article  CAS  PubMed  Google Scholar 

  24. Kim MK, Im W-T, Ohta H, Lee M, Lee S-T (2005) Sphingopyxis granuli sp. nov., a ß-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43:152–157

    CAS  PubMed  Google Scholar 

  25. Kim MK, Lee JW, Lee KY, Yang DC (2005) Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 43:456–462

    CAS  PubMed  Google Scholar 

  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequences database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  27. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular 9 evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  29. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley: Chichester, pp. 115–176

  30. Lee SS (2007) Korean ginseng (ginseng cultivation), Korean ginseng and T. Res Inst. 18–40

  31. Li Z, Zhu H (2012) Chryseobacterium vietnamense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 62:827–831

    Article  CAS  PubMed  Google Scholar 

  32. Loch TP, Faisal M (2014) Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium. Int J Syst Evol Microbiol 64:1573–1579

    Article  CAS  PubMed  Google Scholar 

  33. Loveland-Curtze J, Miteva V, Brenchley J (2010) Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 14:61–69

    Article  CAS  PubMed  Google Scholar 

  34. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  35. Minnikin DE, ODonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  36. Park JH (2004) Sun ginseng—a new processed ginseng with fortified activity. Food Ind Nutr 9:23–27

    Google Scholar 

  37. Park MS, Jung SR, Lee KH, Lee MS, Do JO, Kim SB, Bae KS (2006) Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438

    Article  CAS  PubMed  Google Scholar 

  38. Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87:9–19

    Article  CAS  PubMed  Google Scholar 

  39. Quan Z-X, Kim KK, Kim M-K, Jin L, Lee S-T (2007) Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57:141–145

    Article  CAS  PubMed  Google Scholar 

  40. Saitou N, Nei M (1987) The neighbour – joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  41. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, De: MIDI Inc

  42. Shimomura K, Kaji S, Hiraishi A (2005) Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55:1903–1906

    Article  CAS  PubMed  Google Scholar 

  43. Skerman VBD (1967) A Guide to the Identification of the Genera of Bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  44. Sun H, Wang HT, Kwon WS, Kim YJ, In JG, Yang DC (2011) A simple and rapid technique for the authentication of the ginseng cultivar, Yunpoong, using an SNP marker in a large sample of ginseng leaves. Gene 487:75–79

    Article  CAS  PubMed  Google Scholar 

  45. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R, Nicotra CM (2000) Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 745:431–437

    Article  CAS  PubMed  Google Scholar 

  46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831

    Article  Google Scholar 

  49. Yassin AF, Hupfer H, Siering C, Busse HJ (2010) Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 60:1993–1998

    Article  CAS  PubMed  Google Scholar 

  50. Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426

    Article  CAS  PubMed  Google Scholar 

  51. Zhao X, Wang J, Li J, Fu L, Gao J, Du X, Bi H, Zhou Y, Tai G (2009) Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 36:721–726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries (KIPET No. 317007-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeon-Ju Kim or Deok-Chun Yang.

Additional information

Jong-Hun Noh and Van-An Hoang have contributed equally to this work.

The GenBank/EMBL/DDBJ Accession Number for the 16S rRNA gene sequence of strain DCY68T is JX141783. The DPD Taxonumber of the type strain DCY68T is TA00221.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

284_2017_1335_MOESM1_ESM.tif

Supplementary material 1 (TIFF 9301 kb). Supplementary Fig. S1. Transmission Electron Micrography of strain Chryseobacterium ginsengiterrae DCY68T. Bar, 200 nm.

284_2017_1335_MOESM2_ESM.tif

Supplementary material 2 (TIFF 3158 kb). Supplementary Fig. S2. Two-dimensional TLC of polar lipid analysis. Polar lipid extracts were obtained from (A), Chryseobacterium ginsengiterrae DCY68T; (B) Ch. aquaticum KCTC 12483T and Ch. defluvii B2T (B), stained with 5% ethanolic molybdophosphoric acid for total polar lipids. Abbreviations: PE, Phosphatidylethanolamine; AL1-5, unidentified polar lipids; L1-4, unidentified polarlipids; APL, unidentified aminophospholipids.

284_2017_1335_MOESM3_ESM.tif

Supplementary material 3 (TIFF 1458 kb). Supplementary Fig. S3. Neighbor–joining phylogenetic tree, based on 16S rRNA gene sequences, showing the relationships of strain DCY68T with other Chryseobacterium species. Boot strap values >50% were based on 1000 replications as shown at branching points. Bar, 0.005 substitutions per nucleotide position.

284_2017_1335_MOESM4_ESM.tif

Supplementary material 4 (TIFF 433 kb). Supplementary Fig. S4 HPLC analysis of ginsenoside bioconversion Rb1 to ginsenosides F2. A: ginsenosides standard [peak 1, Rg1; 2, Re; 3, Rf; 4, Rg2; 5, Rb1; 6, Rc; 7, Rb2; 8, Rd; 9, F2; 10, Rg3; 11, cK, 12; Rh2], B: control, only substrate Rb1, C: after 1 day incubation at 30 °C, D: after 2 days incubation, E: after 3 days incubation.

284_2017_1335_MOESM5_ESM.pptx

Supplementary material 5 (PPTX 64 kb). Supplementary Table S1. Similar characteristics of strain DCY68T and related Chryseobacterium type speciesStrains: 1, DCY68T; 2, Ch. limigenitum SUR2T; 3, Ch. aahli T68T; 4, Ch. aquaticum KCTC 12483T; 5, Ch. soldanellicola PSD1-4T. All data are from this study (+, positive; −, negative).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, JH., Hoang, VA., Kim, YJ. et al. Chryseobacterium ginsengiterrae sp. nov., with Beta-Glucosidase Activity Isolated from Soil of a Ginseng Field. Curr Microbiol 74, 1417–1424 (2017). https://doi.org/10.1007/s00284-017-1335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1335-6

Navigation