Skip to main content
Log in

Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A bacterial strain designated antisso-27T, previously isolated from saltpan in Taiwan while screening for bacteria for algicidal activity, was characterized using the polyphasic taxonomic approach. Strain antisso-27T was Gram-negative, aerobic, brownish yellow colored, rod-shaped, non-flagellated and non-gliding. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain antisso-27T belonged to the genus Aquimarina within the family Flavobacteriaceae with relatively low sequence similarities of 94.0–96.6% to other valid Aquimarina spp. It contained iso-C17:0 3-OH, iso-C15:0, iso-C16:0, iso-C15:1 and iso-C15:0 3-OH as the main fatty acids and contained a menaquinone with six isoprene units (MK-6) as the major isoprenoid quinone. Major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, an uncharacterized aminolipid and five uncharacterized phospholipids. Strain antisso-27T employed direct mode of algicidal lysis to Chlorella vulgaris strain 211-31; nevertheless, it released an algicidal substance against M. aeruginosa strain MTY01. This is the first study that the Aquimarina species possesses both direct and indirect algicidal activities. On the basis of the phylogenetic and phenotypic data, strain antisso-27T should be classified as representing a novel species, for which the name A. salinaria sp. nov. is proposed. The type strain is A. salinaria antisso-27T (= BCRC 80080T = LMG 25375T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DM (1997) Turning back the harmful red tide. Nature 338:513–514

    Article  Google Scholar 

  • Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251

    Article  PubMed  CAS  Google Scholar 

  • Barry AI (1980) Procedures and theoretical considerations for testing antimicrobial agents in agar media. In: Logan V (ed) Antibiotics in Laboratory Medicine. Baltimore, William & Wilkins, pp 10–16

    Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP (2000) Description of C. algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of C. uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as C. uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868

    PubMed  CAS  Google Scholar 

  • Breznak JA, Costilow RN (1994) Physicochemical factors in growth. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp 137–154

    Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, de Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Chio HJ, Kim BH, Kim JD, Han MS (2005) Streptomyces neyagawaensis as a control for the hazardous biomass of M. aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol Control 33:335–343

    Article  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  PubMed  CAS  Google Scholar 

  • Collins MD (1985) Isoprenoid quinine analysis in classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical Methods in Bacterial Systematics. London, Academic Press, pp 267–287

  • Cowan ST, Steel KJ (1965) Manual for the Identification of Medical Bacteria. Cambridge University Press, London

    Google Scholar 

  • Embley TM, Wait R (1994) Structural lipids of eubacteria. In: Goodfellow M, O’Donnell AG (eds) Chemical Methods in Prokaryotic Systematics. John Wiley & Sons Ltd, England, pp 121–161

    Google Scholar 

  • Fautz E, Reichenbach JR (1980) A simple test for flexirubintype pigments. FEMS Microbiol Lett 8:87–91

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, USA

    Google Scholar 

  • Furusawa G, Yoshikawa T, Yasuda A, Sakata T (2003) Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can J Microbiol 49:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Holmstrom C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, Ishida K, Ito Y, Okada S, Murakami M (2003) Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, C. polykrikoides. Tetrahedr Lett 44:8005–8007

    Article  CAS  Google Scholar 

  • Kim BY, Weon HY, Cousin S, Yoo SH, Kwon SW, Go SJ, Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kim JD, Kim JY, Park JK, Lee CG (2009) Selective control of the P. minimum harmful algal blooms by a novel algal-lytic bacterium P. haloplanktis AFMB-008041. Mar Biotechnol 11:463–472

    Article  PubMed  CAS  Google Scholar 

  • Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lee SO, Kato J, Takiguchi N, Kuroda A, Ikeda T, Mitsutani A, Ohtake H (2000) Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl Environ Microbiol 66:4334–4339

    Article  PubMed  CAS  Google Scholar 

  • Lewin RA (1969) A classification of flexibacteria. J Gen Microbiol 58:189–206

    PubMed  CAS  Google Scholar 

  • Lovejoy C, Bowman JP, Hallegraeff GM (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (Class Proteobacteria, Gamma subdivision) on harmful algal bloom species of genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol 64:2806–2813

    PubMed  CAS  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  • Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144

    Article  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G-C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Miyazaki M, Nagano Y, Fujiwara Y, Hatada Y, Nogi Y (2010) Aquimarina macrocephali sp. nov., isolated from the sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 60:2298–2302

    Article  PubMed  CAS  Google Scholar 

  • Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp 21–41

    Google Scholar 

  • Nakashima T, Kim D, Miyazaki Y, Yamaguchi K, Takeshita S, Oda T (2006) Mode of action of an antialgal agent produced by a marine gammaProteobacterium against C. marina. Aquat Microb Ecol 45:255–262

    Article  Google Scholar 

  • Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV, Lee KH, Bae KS (2005) Description of A. muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as S. latercula gen. nov., comb. nov. Int J Syst Evol Microbiol 55:225–229

    Article  PubMed  CAS  Google Scholar 

  • Nedashkovskaya OI, Vancanneyt M, Christiaens L, Kalinovskaya NI, Mikhailov VV, Swings J (2006) Aquimarina intermedia sp. nov., reclassification of S. latercula (Lewin 1969) as A. latercula comb. nov. and G. brevivitae Yoon et al. 2006 as A. brevivitae comb. nov. and emended description of the genus Aquimarina. Int J Syst Evol Microbiol 56:2037–2041

    Article  PubMed  CAS  Google Scholar 

  • Nokhal TH, Schlegel HG (1983) Taxonomic study of P. denitrijicans. Int J Syst Bacteriol 33:26–37

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  PubMed  CAS  Google Scholar 

  • Powers EM (1995) Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758

    PubMed  CAS  Google Scholar 

  • Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manage 45:105–112

    Article  PubMed  Google Scholar 

  • Romanowska-Duda Z, Mankiewicz J, Tarczynska M, Walter Z, Zalewski M (2002) The effect of toxic cyanobacteria (blue-green alga) on water plants and animal cells. Pollut J Environ Stud 11:561–566

    Google Scholar 

  • Roth PB, Twiner MJ, Mikulski CM, Barnhorst AB, Doucette GJ (2008) Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate K. brevis. Harmful Algae 7:682–691

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244:1–15

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Weisburg WG, Burns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Yi H, Chun J (2010) Aquimarina addita sp. nov., isolated from seawater. Int J Syst Evol Microbiol doi:10.1099/ijs.0.027433-0

  • Yoon JH, Kang SJ, Jung SY, Oh HW, Oh TK (2006) Gaetbulimicrobium brevivitae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from tidal flat of the Yellow Sea in Korea. J Syst Evol Microbiol 56:115–119

    Article  CAS  Google Scholar 

  • Yoon BJ, You HS, Lee DH, Oh DC (2011) Aquimarina spongiae sp. nov., isolated from marine sponge H. oshoro. Int J Syst Evol Microbiol 61:417–421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 0980055254D and 0990045921J from the Ministry of Education, Republic of China, Taiwan. The authors wish to thank Dr. Hung-Non Chou (Institute of Fisheries Science, Taiwan University, Taiwan) for providing M. aeruginosa strain MTY01 and Dr. Te-Jin Chow (Department of Biotechnology, Fooyin University, Taiwan) for providing C. vulgaris strain 211-31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Yi Sheu.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WM., Sheu, FS. & Sheu, SY. Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. Arch Microbiol 194, 103–112 (2012). https://doi.org/10.1007/s00203-011-0730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0730-9

Keywords

Navigation