Skip to main content

Advertisement

Log in

Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Microbiol 32:270–277

    Article  CAS  Google Scholar 

  • Alper T (1961) Variability in the oxygen effect observed with microorganisms. II. Escherichia coli B. Int J Radiat Biol 3:369–377

    Article  PubMed  CAS  Google Scholar 

  • Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan DE (1956) Studies on a radiation-resistant micrococcus. Isolation, morphology, cultural characteristics and resistance of γ-radiation. Food Technol 10:575–577

    Google Scholar 

  • Arrage AA, Phelps TJ, Benoit RE, White DC (1993) Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Appl Environ Microbiol 59:3545–3550

    PubMed  CAS  Google Scholar 

  • Atomi H, Matsumi R, Imanaka T (2004) Reverse gyrase is not a prerequisite for hyperthermophilic life. J Bacteriol 186:4829–4833

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of al unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343

    Article  PubMed  CAS  Google Scholar 

  • Barker S, Weinfeld M, Murray D (2005) DNA–protein crosslinks: their induction, repair, and biological consequences. Mutat Res 589:111–135

    Article  PubMed  CAS  Google Scholar 

  • Bauermeister A, Bentchikou E, Moeller R, Rettberg P (2009) Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Arch Microbiol 191:913–918

    Article  PubMed  CAS  Google Scholar 

  • Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P (2011) Effect of relative humidity on Deinococcus radiodurans’ resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. Microb Ecol. doi: 10.1007/s00248-010-9785-4

  • Beblo K, Rabbow E, Rachel R, Huber H, Rettberg P (2009) Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13:521–531

    Article  PubMed  Google Scholar 

  • Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF (2002) The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148–151

    Article  PubMed  CAS  Google Scholar 

  • Boussau B, Blanquart S, Necsulea A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperatures in the Archaean eon. Nature 456:942–945

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68

    Article  CAS  Google Scholar 

  • Choli T, Henning P, Wittmann-Liebold B, Reinhardt R (1988) Isolation, characterization and microsequence analysis of a small basic methylated DNA-binding protein from the Archaebacterium, Sulfolobus solfataricus. Biochim Biophys Acta 950:193–203

    PubMed  CAS  Google Scholar 

  • Chyba CF (2005) Rethinking Earth’s early atmosphere. Science 308:962–963

    Article  PubMed  Google Scholar 

  • Clavero MRS, Monk JD, Beuchat LR, Doyle MP, Brackett RE (1994) Inactivation of Escherichia coli 0157:H7, Salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl Environ Microbiol 60:2069–2075

    PubMed  CAS  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245

    Article  PubMed  CAS  Google Scholar 

  • Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56:858–870

    Article  PubMed  CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  PubMed  CAS  Google Scholar 

  • DiGiulio M (2000) The universal ancestor lives in a thermophilic or hyperthermophilic environment. J Theor Biol 203:203–213

    Article  CAS  Google Scholar 

  • DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645

    PubMed  CAS  Google Scholar 

  • Dorazi R, Götz D, Munro S, Bernander R, White MF (2007) Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus. Mol Microbiol 63:521–529

    Article  PubMed  CAS  Google Scholar 

  • Dose K, Klein A (1996) Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures. Orig Life Evol Biosph 26:47–59

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggest a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Cadet J (2003) Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochem Photobiol Sci 2:433–436

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Court M, Sauvaigo S, Odin F, Cadet J (2000) Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by HPLC–MS/MS. J Biol Chem 275:11678–11685

    Article  PubMed  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. respresents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. System Appl Microbiol 8:106–113

    Google Scholar 

  • Franson MAH (ed) (1985) Standard methods for the examination of water and wastewater. In: American Public Health Association, 16th edn. Washington, DC

  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  PubMed  CAS  Google Scholar 

  • Froels S, Gordon PMK, Panlilio MA, Duggin IG, Bell SD, Sensen CW, Schleper C (2007) Response of the hyperthermophilic Archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 189:8708–8718

    Article  Google Scholar 

  • Froels S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, Boekema EJ, Driessen AJ, Schleper C, Albers SV (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 70:938–952

    Article  CAS  Google Scholar 

  • Gerard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 266:72–78

    Article  PubMed  CAS  Google Scholar 

  • Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci USA 105:5139–5144

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (1998) Hyperthermophiles and the problem of DNA instability. Mol Microbiol 28:1043

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (2000) The question of DNA-repair in hyperthermophilic archaea. Trends Microbiol 8:180–185

    Article  PubMed  CAS  Google Scholar 

  • Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Holloman WK, Schirawski J, Holliday R (2007) Towards understanding the extreme radiation resistance of Ustilago maydis. Trends Microbiol 15:525–529

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547

    Article  PubMed  CAS  Google Scholar 

  • Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378

    CAS  Google Scholar 

  • Huber H, Thomm M, Koenig H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Article  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacetophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Koenig H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacterium. Syst Appl Microbiol 15:340–351

    Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  PubMed  CAS  Google Scholar 

  • Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, Rachel R, Huber H (2008) Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two Archaea. J Bacteriol 190:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  PubMed  CAS  Google Scholar 

  • Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    Article  PubMed  CAS  Google Scholar 

  • Jones W, Leigh J, Mayer F, Woese C, Wolfe R (1984) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  Google Scholar 

  • Kikuchi A, Asai K (1984) Reverse gyrase—a topoisomerase which introduces positive superhelical turns into DNA. Nature 309:677–681

    Article  PubMed  CAS  Google Scholar 

  • Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 11:1066–1078

    Article  PubMed  CAS  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter CJ (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  PubMed  CAS  Google Scholar 

  • Kluyver AJ, Schnellen GTP (1947) Fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 14:57–70

    PubMed  CAS  Google Scholar 

  • Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y (2000) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275:33782–33790

    Article  PubMed  CAS  Google Scholar 

  • Kopylov VM, Bonch-Osmolovskaya EA, Svetlichnyi VA, Miroshnichenko ML, Skobkin VS (1993) γ-resistance and UV-sensitivity of extremely thermophilic archaebacteria and eubacteria. Mikrobiologiya 62:90–95

    Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  • La Paglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63:3158–3163

    Google Scholar 

  • Maeder DL, Weiss RB, Dunn DM, Cherry JL, González JM, DiRuggiero J, Robb FT (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152:1299–1305

    PubMed  CAS  Google Scholar 

  • Mattimore V, Battista R (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  • McCready S, Marcello L (2003) Repair of UV damage in Halobacterium salinarum. Biochem Soc Trans 31:694–698

    Article  PubMed  CAS  Google Scholar 

  • McCready S, Carr AM, Lehmann AR (1993) Repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in the fission yeast Schizosaccharomyces pombe. Mol Microbiol 10:885–890

    Article  PubMed  CAS  Google Scholar 

  • Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DL, Nairn RS (1989) The biology of the (6-4) photoproduct. Photochem Photobiol 49:805–819

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Horneck G, Facius R, Stackebrandt E (2005) Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol Ecol 51:231–236

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Stackebrandt E, Douki T, Cadet J, Rettberg P, Mollenkopf HJ, Reitz G, Horneck G (2007a) DNA bipyrimidine photoproduct repair and transcriptional response of UV-C irradiated Bacillus subtilis. Arch Microbiol 188:421–431

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL (2007b) Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and Ionizing Radiation. J Bacteriol 189:3306–3311

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Reitz G, Douki T, Cadet J, Horneck G, Stan-Lotter H (2010) UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 73:271–277

    PubMed  CAS  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for Life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  PubMed  CAS  Google Scholar 

  • Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M (2004) Reverse gyrase recruitment to DNA after UV light irradiation in Sulfolobus solfataricus. J Biol Chem 279:33192–33198

    Article  PubMed  CAS  Google Scholar 

  • Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K (2005) Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 71:8147–8156

    Article  PubMed  CAS  Google Scholar 

  • Niemira BA, Solomon EB (2005) Sensitivity of planktonic and biofilm-associated Salmonella spp. to ionizing radiation. Appl Environ Microbiol 71:2732–2736

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of the early life. Nature 409:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of Bacteria under conditions simulating the martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970

    Article  PubMed  CAS  Google Scholar 

  • Paper W, Jahn U, Hohn M, Kronner M, Naether D, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int J Syst Evol Microbiol 57:803–808

    Article  PubMed  CAS  Google Scholar 

  • Peak JG, Peak MJ (1991) Comparison of initial yields of DNA-to-protein crosslinks and single-strand breaks induced in cultured human cells by far- and near-ultraviolet light, blue light and X-rays. Mutat Res 246:187–191

    Article  PubMed  CAS  Google Scholar 

  • Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO (2008) A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 9:R158

    Article  PubMed  Google Scholar 

  • Riesenman PJ, Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol 66:620–626

    Article  PubMed  CAS  Google Scholar 

  • Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  PubMed  CAS  Google Scholar 

  • Rimsky S (2004) Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7:109–114

    Article  PubMed  CAS  Google Scholar 

  • Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9:520–525

    Article  PubMed  CAS  Google Scholar 

  • Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarum against DNA-damaging agents. J Radiat Res 39:251–262

    Article  PubMed  CAS  Google Scholar 

  • Shapiro L, McAdams HH, Losick R (2009) Why and how bacteria localize proteins. Science 326:1225–1228

    Article  PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Slieman TA, Nicholson WL (2000) Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Appl Environ Microbiol 66:199–205

    Article  PubMed  CAS  Google Scholar 

  • Smith KC (1962) Dose dependent decrease of DNA of Bacteria following irradiation with ultraviolet light or with visible light and dye. Biochem Biophys Res Communs 8:157–163

    Article  CAS  Google Scholar 

  • Stapleton GE, Engel MS (1960) Cultural conditions as determinants of sensitivity of Escherichia coli to damaging agents. J Bacteriol 80:544–551

    PubMed  CAS  Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

    Google Scholar 

  • Stetter KO (1996) Hyperthermophiles in the history of life. Ciba Found Symp 202:1–18

    PubMed  CAS  Google Scholar 

  • Stoehr R, Waberski A, Voelker H, Tindall B, Thomm M (2001) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862

    Article  Google Scholar 

  • van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc Natl Acad Sci USA 101:6969–6974

    Article  PubMed  Google Scholar 

  • Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868

    Article  PubMed  CAS  Google Scholar 

  • Wardleworth BN, Russell RJM, Bell SD, Taylor GL, White MF (2002) Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J 21:4654–4662

    Article  PubMed  CAS  Google Scholar 

  • Zeikus J, Wolfe R (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    PubMed  CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz J (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  CAS  Google Scholar 

  • Zillig W, Stetter KO, Schaefer W, Janekovic D, Wunderl S, Holz J, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zentralbl Bakteriol Mikrobiol Hyg I Abt C 2:205–227

    CAS  Google Scholar 

  • Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87

    Google Scholar 

  • ZoBell CE (1941) Studies on marine bacteria. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75

    Google Scholar 

  • Zolghadr B, Klingl A, Koerdt A, Driessen AJ, Rachel R, Albers SV (2010) Appendage-mediated surface adherence of Sulfolobus solfataricus. J Bacteriol 192:104–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Prof. Dr. Reinhard Sterner (Institute of Biophysics und Physical Biochemistry, University of Regensburg, Germany) for fruitful discussions and Dr. Andreas Klingl (Center for Electron Microscopy, University of Regensburg, Germany) for performing the scanning electron microscopy. Survival data from B. subtilis and D. radiodurans were kindly provided by Marko Wassmann and Anja Bauermeister (both German Aerospace Centre, Institute of Aerospace Medicine, Radiation Biology Division, Cologne, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Beblo.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beblo, K., Douki, T., Schmalz, G. et al. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol 193, 797–809 (2011). https://doi.org/10.1007/s00203-011-0718-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0718-5

Keywords

Navigation