Skip to main content
Log in

Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We examined short- and long-term desiccation tolerance of 31 strains of thermophilic and hyperthermophilic Archaea and thermophilic phylogenetically deep-branching Bacteria. Seventeen organisms showed a significant high ability to withstand desiccation. The desiccation tolerance turned out to be species-specific and was influenced by several parameters such as storage temperature, pH, substrate or presence of oxygen. All organisms showed a higher survival rate at low storage temperatures (−20°C or below) than at room temperature. Anaerobic and microaerophilic strains are influenced negatively in their survival by the presence of oxygen during desiccation and storage. The desiccation tolerance of Sulfolobales strains is co-influenced by the pH and the substrate of the pre-culture. The distribution of desiccation tolerance in the phylogenetic tree of life is not domain specific. Surprisingly, there are dramatic differences in desiccation tolerance among organisms from the same order and even from closely related strains of the same genus. Our results show that tolerance of vegetative cells to desiccation is a common phenomenon of thermophilic and hyperthermophilic microorganisms although they originated from quite different non-arid habitats like boiling acidic springs or black smoker chimneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Public Health Association (1972) Methods for the examination of water and wastewater, 14th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan DE (1956) Studies on a radiation-resistant micrococcus. Isolation, morphology, cultural characteristics and resistance of γ-radiation. Food Technol 10:575–577

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of al unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Barker HA (1936) Studies upon the methane-producing bacteria. Arch Microbiol 7:420–438

    CAS  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Mol Biol Rev 49:359–378

    CAS  Google Scholar 

  • Brioukhanov A, Netrusov A, Sordel M, Thauer RK, Shima S (2000) Protection of Methanosarcina barkeri against oxidative stress: identification and characterization of an iron superoxide dismutase. Arch Microbiol 174:213–216

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Google Scholar 

  • Burghardt T, Saller M, Guerster S, Mueller D, Meyer C, Jahn U, Hochmuth E, Deutzmann R, Siedler F, Babinger P, Wirth R, Huber H, Rachel R (2008) Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 190:379–394

    Article  PubMed  CAS  Google Scholar 

  • Chyba CF (2005) Rethinking Earth’s early atmosphere. Science 308:962–963

    Article  PubMed  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:769–779

    Article  CAS  Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Cont SF (1970) A thermophilic, acidophilic Mycoplasma isolated from a coal refuse pile. Science 170:1416–1418

    Article  PubMed  CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2000) The universal ancestor lives in a thermophilic or hyperthermophilic environment. J Theor Biol 203:203–213

    Article  PubMed  CAS  Google Scholar 

  • Ditzel L, Loewe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138

    Article  PubMed  CAS  Google Scholar 

  • Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12:221–229

    Article  PubMed  CAS  Google Scholar 

  • Elferink MGL, De Wit JG, Driessen AJM, Konings WN (1994) Stability and proton- permeability of liposomes composed of archaeal tetraether lipids. Biochem Biophys Acta 1193:247–254

    Article  PubMed  CAS  Google Scholar 

  • Fetzer S, Bak F, Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 12:107–115

    Article  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. respresents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst Appl Microbiol 8:106–113

    Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1996) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Google Scholar 

  • Gest H, Mandelstam J (1987) Longevity of microorganisms in natural environments. Microbiol Sci 4:69–71

    PubMed  CAS  Google Scholar 

  • Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci USA 105:5139–5144

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719

    PubMed  CAS  Google Scholar 

  • Grogan DW (1998) Hyperthermophiles and the problem of DNA instability. Mol Microbiol 28:1043

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (2000) The question of DNA-repair in hyperthermophilic archaea. Trends Microbiol 8:180–185

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283

    Article  PubMed  CAS  Google Scholar 

  • Holloman WK, Schirawski J, Holliday R (2007) Towards understanding the extreme radiation resistance of Ustilago maydis. Trends Microbiol 15:525–529

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Buecker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:1041–1045

    Google Scholar 

  • Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Eder W (2006) Aquificales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 925–938

    Google Scholar 

  • Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378

    CAS  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacetophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Koenig H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacterium. Syst Appl Microbiol 15:340–351

    Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    PubMed  CAS  Google Scholar 

  • Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100

    PubMed  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002a) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Diller S, Horn C, Rachel R (2002b) Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52:1859–1865

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Stetter KO (2006) Nanoarchaeota. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 274–280

    Google Scholar 

  • Jones W, Leigh J, Mayer F, Woese C, Wolfe R (1984) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  Google Scholar 

  • Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov. sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Evol Microbiol 34:5–10

    Article  CAS  Google Scholar 

  • Kendrick MG, Kral TA (2006) Survival of methanogens during desiccation: implications for life on Mars. Astrobiology 6:546–551

    Article  PubMed  CAS  Google Scholar 

  • Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol (published online)

  • Kluyver AJ, Schnellen GTP (1947) Fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 14:57–70

    CAS  PubMed  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  • Kurr M, Huber R, Koenig H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1992) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247

    Article  Google Scholar 

  • Luebben M, Schaefer G (1989) Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N, N′-dicyclohexylcarbodiimide-binding proteolipid. J Bacteriol 171:6106–6116

    CAS  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63:896–902

    PubMed  CAS  Google Scholar 

  • Mattimore V, Battista R (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 78:633–637

    Google Scholar 

  • Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369

    Article  PubMed  CAS  Google Scholar 

  • Melosh HJ (2003) Exchange of meteorites (and life?) between stellar systems. Astrobiology 3:207–215

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto-Shinohara Y, Imaizumi T, Sukenobe J, Murakami Y, Kawamura S, Komatsu Y (2000) Survival rate of microbes after freeze-drying and long-term storage. Cryobiology 41:251–255

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Wagner D (2007) Stress response of methanogenic archaea from siberian permafrost compared with methanogens from non permafrost habitats. FEMS Microbiol Ecol 61:16–25

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HL, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of the early life. Nature 409:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of Bacteria under conditions simulating the martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970

    Article  PubMed  CAS  Google Scholar 

  • Paper W, Jahn U, Hohn M, Kronner M, Naether D, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int J Syst Evol Microbiol 57:803–808

    Article  PubMed  CAS  Google Scholar 

  • Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722

    PubMed  CAS  Google Scholar 

  • Prestrelski SJ, Tedeschi N, Arakawa T, Carpentert JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671

    Article  PubMed  CAS  Google Scholar 

  • Rettberg P, Pogoda de La Vega U, Horneck G (2004) Deinococcus radiodurans—a model organism for life under martian conditions. In: Proceedings of the third European workshop on exo-astrobiology, pp 59–62

  • Romesser JA, Wolfe RS, Mayer F, Speiss E, Walther-Mauruschat A (1979) Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121:147–153

    Article  CAS  Google Scholar 

  • Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int J Syst Bacteriol 46:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Segerer A, Longworthy TA, Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10:161–171

    Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

    Google Scholar 

  • Stetter KO (1996) Hyperthermophiles in the history of life. Ciba Found Symp 202:1–10

    PubMed  CAS  Google Scholar 

  • Stetter KO, Koenig H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551

    CAS  Google Scholar 

  • Stoehr R, Waberski A, Liesack W, Voelker H, Wehmeyer U, Thomm M (2001a) Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing β-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488

    Google Scholar 

  • Stoehr R, Waberski A, Voelker H, Tindall B, Thomm M (2001b) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862

    Google Scholar 

  • Takao M, Oikawa A, Yasui A (1990) Characterization of a superoxide dismutase gene from the archaebacterium Methanobacterium thermoautotrophicum. Arch Biochem Biophys 283:210–216

    Article  PubMed  CAS  Google Scholar 

  • Voelkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926

    CAS  Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soell D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic Bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 165–207

    Google Scholar 

  • Zeikus J, Wolfe R (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    PubMed  CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz J (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  CAS  Google Scholar 

  • Zillig W, Stetter KO, Schaefer W, Janekovic D, Wunderl S, Holz J, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zentralbl Bakteriol Mikrobiol Hyg I Abt C 2:205–227

    CAS  Google Scholar 

  • Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87

    Google Scholar 

  • ZoBell CE (1941) Studies on marine bacteria. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75

    Google Scholar 

Download references

Acknowledgments

We want to thank Kerstin Roth for performing desiccation experiments with Metallosphaera sedula and Dr. Guenther Reitz, Head of Radiation Biology Department at German Aerospace Center (DLR), for ongoing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Beblo.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beblo, K., Rabbow, E., Rachel, R. et al. Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13, 521–531 (2009). https://doi.org/10.1007/s00792-009-0239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0239-1

Keywords

Navigation