Skip to main content
Log in

Colutea arborescens is nodulated by diverse rhizobia in Eastern Morocco

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Eighteen isolates of rhizobia isolated from root nodules of Colutea arborescens (Bladder senna) grown in different soils of the eastern area of Morocco were characterized by phenotypic and genomic analyses. All the isolates characterized were fast growers. This is may be due to the isolation procedures used. The phenotypic, symbiotic and cultural characteristics analyzed allowed the description of a wide physiological diversity among tested isolates. The results obtained suggest that the phenotype of these rhizobia might have convergent evolved to adapt the local conditions. The genetic characterization consisted in an analysis of the rep-PCR fingerprints and the PCR-based RFLP of the 16S rDNA patterns. The 16S rDNA of six isolates representing the main ribotypes obtained by the PCR-based RFLP was sequenced. A large diversity was observed among these rhizobia, and they were classified as different species of the genera Rhizobium, Sinorhizobium and Mesorhizobium. The nodC gene was also sequenced, and the results confirmed the three lineages corresponding to the three genera. The results of the sequencing of nodC and 16S rDNA genes suggest that the nodulation genes and chromosome might have co-evolved among these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelmoumen H, Filali-Maltouf A, Belabed A, Missbah El Idrissi M (1999) Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. J Appl Microbiol 86:889–898

    Article  CAS  Google Scholar 

  • Alegre J, Sancha JL, Guía E, Agudo MA (1993) Caracterización nutritiva de arbustos forrajeros: I Composición química de leguminosas arbustivas y su evolución estacional. XVIII Jornadas Científicas de la Sociedad Española de Ovinotécnia y Caprinotécnia (SEOC) Albacete 301–306

  • Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press, Madison, WI/Macmillan Publishing, London

    Google Scholar 

  • Allue Andrade JL (1983) Morphology, types, attributes difficulties and treatments in production and germination of seeds of (Colutea arborescens L.). Anales del Instituto Nacional de Investigaciones Agrarias Seria Forestal 7:129–154

    Google Scholar 

  • Benata H, Ourarhi M, Boukhatem N, Berrichi A, Abdelmoumen H, Muresu R, Squartini A, Missbah El Idrissi M (2008) Diversity of bacteria that nodulate Prosopis juliflora in the eastern area of Morocco. Syst Appl Microbiol 31:378–386

    Article  CAS  PubMed  Google Scholar 

  • Beringer JE (1974) Factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Brenner DJ, McWhorter AC, Knutson JK, Steigerwalt AG (1982) Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140

    CAS  PubMed  Google Scholar 

  • Cubo TM, Buendia-Claveria A, Beringer JE, Ruiz-Sainz JE (1988) Melanin production by Rhizobium strains. Appl Environ Microbiol 54:1812–1817

    CAS  PubMed  Google Scholar 

  • Day DA, Copeland L (1991) Carbon metabolism and compartimentation in nitrogen fixing legume nodules. Plant Physiol Biochem 29:185–201

    CAS  Google Scholar 

  • De Oliveira AN, De Oliveira ILA, Andrade JS, Chagas JAF (2007) Rhizobia amylase production using various starchy substances as carbon substrates. Braz J Microbiol 38:208–216

    Google Scholar 

  • Dommergues Y (1995) Nitrogen fixation by trees in relation to soil nitrogen economy. Fert Res 42:245–271

    Article  Google Scholar 

  • El Kahouaji MS (1995) Contribution à une étude ethnobotanique des plantes médicinales dans le Maroc. Dissertation, Mohamed Premier University, Oujda, Morocco

  • Fall D, Diouf D, Ourarhi M, Faye A, Abdelmoumen H, Neyra M, Sylla SN, Missbah El Idrissi M (2008) Phenotypic and genotypic characteristics of Acacia Senegal (L) Willd root-nodulating bacteria isolated from soils in the dryland part of Senegal. J Appl Microbiol 47:85–97

    CAS  Google Scholar 

  • Graham PH, Parker CA (1964) Diagnostic features in the characterization of the root nodule bacteria of legumes. Plant Soil 20:383–396

    Article  Google Scholar 

  • Grosvenor PW, David OG (1996) Colutequinone and colutehydroquinone, antifungal isoflavonoids from Colutea arborescens. Phytochemistry 43:377–380

    Article  CAS  PubMed  Google Scholar 

  • Haloui B (1991) La végétation du Maroc oriental: Phytoécologie Phytomasse-Minéralomasse et productivité des principaux écosystèmes forestiers. Dissertation, Mohamed Premier University, Oujda, Morocco

  • Hungria M, Vargas M (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil Field. Crops Research 65:151–164

    Article  Google Scholar 

  • Ireland JA, Vincent JM (1968) A quantitative study of competition for nodule formation. Trans 9th Int Congr Soil Sci Soc 2:85–93

    Google Scholar 

  • Jenkins MB, Virginia RA, Jarrel WM (1987) Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran desert. Appl Environ Microbiol 33:36–40

    Google Scholar 

  • Karanja NK, Wood M (1988) Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgoris L) in Kenya: tolerance of high temperatures and antibiotic resistance. Plant and Soil 112:15–22

    Article  CAS  Google Scholar 

  • Kucuk C, Kivanc M, Kinaci E (2006) Characterization of Rhizobium sp. isolated from Bean. Turk J Biol 30:127–132

    CAS  Google Scholar 

  • Kumari BSM, Ram R, Mallaiah KV (2009) Studies on exopoly-saccharide and indole acetic acid production by Rhizobium strains from Indigofera. Afr J Microbiol Res 3:10–14

    Google Scholar 

  • Laguerre G, Van Berkum P, Amarger N, Prevost D (1997) Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis and Onobrychis. Appl Environ Microbiol 63:4748–4758

    CAS  PubMed  Google Scholar 

  • Lindström K, Lehtomäki S (1988) Metabilic proporties; maximum growth temperature and phage sensitivity of Rhizobium sp. (Galegae) compared with other fast-growing rhizobia. FEMS Microbiol Lett 50:365–367

    Article  Google Scholar 

  • Missbah El Idrissi M, Aujjar N, Belabed A, Desseaux Y, Filali-Maltouf A (1996) Characterization of rhizobia isolated from carobe tree (Ceratonia siliqua). J Appl Bacteriol 80:165–173

    Google Scholar 

  • Mohamed SH, Smouni A, Neyra M, Kharchaf D, Filali Maltouf A (2000) Phenotypic characteristics of root nodulating bacteria isolated from Acacia spp. grown in Libya. Plant Soil 224:171–183

    Article  CAS  Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  CAS  PubMed  Google Scholar 

  • Papachristou TG, Platis PD, Papanastasis VP, Tsiouvaras CN (1999) Use of deciduous woody species as a diet supplement for goats grazing Mediterranean shrublands during the dry season. Anim Feed Sci Technol 80:267–279

    Article  Google Scholar 

  • Papanastasis VP, Platis PD, Dini-Papanastasi O (1997) Comparative productivity of deciduous woody fodder species and its relation to air temperature and precipitation in a Mediterranean environment. Agroforest Syst 37:187–1987

    Article  Google Scholar 

  • Polhill RM (1981) Galegeae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, 2nd edn. Kew, Royal Botanic Gardens, pp 357–364

    Google Scholar 

  • Ruiz-Díez B, Fajardo S, Puertas-Mejía MA, de Felipe Mdel R, Fernández-Pascual M (2009) Stress tolerance, genetic analysis and symbiotic properties of root-nodulating bacteria isolated from Mediterranean leguminous shrubs in Central Spain. Arch Microbiol 191:35–46

    Article  PubMed  Google Scholar 

  • Singh BRK, Singh K (2008) Characterization of Rhizobium strains isolated from the roots of Trigonella foenum graecum (fenugreek). Afr J Biotechnol 7:3671–3676

    CAS  Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Nantakorn B (2005) Cassava as a cheap source of carbon for rhizobial inoculant production using an amylase producing fungus and a glycerol-producing yeast. World J Microbiol Biotechnol 21:823–829

    Article  CAS  Google Scholar 

  • Versalovic JM, Schneider F, Bruijn D, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Bio l5:25–40

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. International biological programme handbook, no 15. Blackwell, Oxford

    Google Scholar 

  • Waldon HB, Jenkins MB, Virginia RA, Harding EE (1989) Characteristics of woodl and rhizobial populations from surface and deep-soil environment of the Sonoran Desert. Appl Environ Microbiol 55:3058–3064

    CAS  PubMed  Google Scholar 

  • Weir BS (2006) The current taxonomy of rhizobia, New Zealand rhizobia website, http://www.rhizobia.co.nz/taxonomy/rhizobia.html. Regularly updated

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Young JM (2003) The genus name Ensifer casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and sinorhizobuim morelense wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination “Sinorhizobuim adhaerens” (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53: 2107–2110

    Google Scholar 

  • Zahran HH, Rasanen LA, Karsisto M, Lindstrom K (1994) Alteration of lipopolysaccharide and protein profiles in SDS–PAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105

    Article  CAS  Google Scholar 

  • Zerhari K, Aurag J, Khbaya B, Kharchaf D, Filali-Maltouf A (2000) Phenotypic characteristics of rhizobia isolates nodulating Acacia species in the arid and Saharan regions of Morocco. Lett Appl Microbiol 30:351–357

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Harper R, Karsisto M, Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Missbah El Idrissi.

Additional information

Communicated by Ursula Priefer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ourarhi, M., Abdelmoumen, H., Guerrouj, K. et al. Colutea arborescens is nodulated by diverse rhizobia in Eastern Morocco. Arch Microbiol 193, 115–124 (2011). https://doi.org/10.1007/s00203-010-0650-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0650-0

Keywords

Navigation