Skip to main content

Advertisement

Log in

Biosynthesis of rubradirin as an ansamycin antibiotic from Streptomyces achromogenes var. rubradiris NRRL3061

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The four overlapping cosmids from the rubradirin producer, Streptomyces achromogenes var rubradiris NRRL 3061, have 58 ORFs within a 105.6 kb fragment. These ORFs harbored essential genes responsible for the formation and attachment of four distinct moieties, along with the genes associated with regulatory, resistance, and transport functions. The PKS (rubA) and glycosyltransferase (rubG2) genes were disrupted in order to demonstrate a complete elimination of rubradirin production. The rubradirin biosynthetic pathway was proposed based on the putative functions of the gene products, the functional identification of sugar genes, and the mutant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AHBA:

3-Amino-5-hydroxybenzoic acid

AMC:

3-Amino-4-hyrdoxy-7-methoxycoumarin

DHDP:

3,4-Dihydroxydipicolinate

NRPS:

Nonribosomal polypeptide synthetase

PKS:

Polyketide synthase

References

  • August PR, Tang L, Yoon YJ, Ning S, Muller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zha-ng X, Hutchinson CR, Floss HC (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79

    Article  PubMed  CAS  Google Scholar 

  • Bannister B, Zapotocky BA (1992) Protorubradirin, an antibiotic containing a C-nitroso-sugar fr-agment, is the true secondary metabolite produced by Streptomyces achromogenes var. rubradiris. Rubradirin, described earlier, is its photo-oxidation product. J Antibiot (Tokyo) 45:1313–1324

    CAS  Google Scholar 

  • Bhuyan BK, Owen SP, Dietz A (1964) Rubradirin, a new antibiotic. I. Fermentation and biological properties. Antimicrobi Agents Chemother 10:91–96

    PubMed  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  • Brimacombe JS, Rahman KMM (1983) Synthesis of l-rubranitrose (2,3,6-trideoxy-3-C-methyl-4 -O-methyl-3-nitro-l-xylo-hexopyranose) and naturally occuring d-enantiomer. Carbohydr Res 114:C1–C2

    Article  CAS  Google Scholar 

  • Chen H, Thomas MG, Hubbard BK, Losey HC, Walsh CT, Burkart MD (2000) Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-l-epivancosamine in chloroeremomycin biosynthesis. Proc Natl Acad Sci USA 97:11942–11947

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Walsh CT (2001) Coumarin formation in novobiocin biosynthesis: beta-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. Chem Biol 8:301–312

    Article  PubMed  CAS  Google Scholar 

  • Daniel RA, Errington J (1993) Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. J Mol Biol 232:468–483

    Article  PubMed  CAS  Google Scholar 

  • Eustaquio AS, Luft T, Wang ZX, Gust B, Chater KF, Li SM, Heide L (2003) Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Arch Microbiol 180:25–32

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Frost JW (2002) Kanosamine biosynthesis: a likely source of the aminoshikimate pathway’s nitrogen atom. J Am Chem Soc 124:10642–10643

    Article  PubMed  CAS  Google Scholar 

  • He XM, Liu HW (2002) Formation of unusual sugars: mechanistic studies and biosynthetic applications. Annu Rev Biochem 71:701–754

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Bai L, Xue Q, Revill WP, Yu TW, Floss HG (2002) Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desmethyl-2-methoxy-6-deoxyerythronolide B. J Am Chem Soc 124:5268–5269

    Article  PubMed  CAS  Google Scholar 

  • Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279:7413–7419

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Mervyn JB, Buttner MJ, Chater KF, Hoopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, Norwich

    Google Scholar 

  • Kim C-G, Yu TW, Fryhle CB, Handa S, Floss HG (1998) 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of the mC7N units in rifamycin and related antibiotics. J Biol Chem 13:6030–6040

    Article  Google Scholar 

  • Lamichhane J, Liou K, Lee HC, Kim CG, Sohng JK (2006) Functional characterization of ketoreductase (rubN6) and aminotransferase (rubN4) genes in the gene cluster of Streptomyces achromogenes var. rubradiris. Biotechnol Lett 28:545–553

    Article  PubMed  CAS  Google Scholar 

  • Maharjan J, Liou K, Lee HC, Kim CG, Lee JJ, Yoo JC, Sohng JK (2003) Functional identificati-on of rub52 gene involved in the biosynthesis of rubradirin. Biotechnol Lett 25:909–915

    Article  PubMed  CAS  Google Scholar 

  • Marshall VP, McWethy SJ, Sirotti JM, Cialdella JI (1990) The effect of neutral resins on the fermentation production of rubradirin. J Ind Microbiol 5:283–287

    Article  PubMed  CAS  Google Scholar 

  • Payton M, Mushtaq A, Yu TW, Wu LJ, Sinclair J, Sim E (2001) Eubacterial arylamine N-acetylt-ransferases— identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues. Microbiology 147:1137–1147

    PubMed  CAS  Google Scholar 

  • Rascher A, Hu Z, Viswanathan N, Schirmer A, Reid R, Nierman WC, Lewis M, Hutchinson CR (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218:223–230

    Article  PubMed  CAS  Google Scholar 

  • Reusser F (1973) Rubradirin, an inhibitor of ribosomal polypeptide biosynthesis. Biochemistry 12:1136–1142

    Article  PubMed  CAS  Google Scholar 

  • Reusser F (1979) Inhibition of ribosomal and RNA polymerase functions by rubradirin and its aglycone. J Antibiot (Tokyo) 32:1186–1192

    CAS  Google Scholar 

  • Russer F, Bannister B, Tarpley WG, Althaus IW, Zapotocky BA (1988) Rubradirin derivatives for treatment of HIV infection. Patent Cooperation Treaty W08808707

  • Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Sohng JK, Oh TJ, Lee JJ, Kim CG (1997) Identification of a gene cluster of biosynthetic genes of rubradirin substructures in S. achromogenes var. rubradiris NRRL3061. Mol Cells 7:674–681

    PubMed  CAS  Google Scholar 

  • Staffa A, Zazopoulos E, Mercure S, Nowacki P (2001) Genetic locus for everninomicin biosynth-esis. Patent WO 0155180-A49

  • Sun Y, Zhou X, Dong H, Tu G, Wang M, Wang B, Deng Z (2003) A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem Biol 10:431–441

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Yoon YJ, Choi CY, Hutchinson CR (1998) Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene 216:255–265

    Article  PubMed  CAS  Google Scholar 

  • Volchegursky Y, Hu Z, Katz L, McDaniel R (2000) Biosynthesis of the anti-parasitic agent megalomicin: transformation of erythromycin to megalomicin in Saccharopolyspora erythraea. Mol Microbiol 37:752–762

    Article  PubMed  CAS  Google Scholar 

  • Wherli W (1977) Topics in current chemistry. Ansamycins. chemistry, biosynthesis and biological activity, vol 72. Berlin Heidelberg, pp 21–49

  • Yoo JC, Choi JY, Yun SC, Kim CG, Lee JJ, Kim SB, Sohng JK (2000) Sequence analysis and expression of rubN2 as dTDP-Glucose 4,6-dehydratase gene cloned from Streptomyces achromogenes var. rubradiris NRRL 3061, rubradirin producer. J Biochem Mol Biol Biophys 4:313–321

    CAS  Google Scholar 

  • Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 21C Frontier Microbial Genomics and Application Center Program, Ministry of Science & Technology (Grant MG02-0301-004-2-3-1), Republic of Korea. The standard rubradirin sample was supplemented by Pfizer Global Research and Development Strategic Alliances, Eastern Point Road, Gorton, Connecticut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Additional information

Communicated by Jean-Luc Pernodet.

The GeneBank accession number for the sequence reported in this paper is AJ871581.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CG., Lamichhane, J., Song, KI. et al. Biosynthesis of rubradirin as an ansamycin antibiotic from Streptomyces achromogenes var. rubradiris NRRL3061. Arch Microbiol 189, 463–473 (2008). https://doi.org/10.1007/s00203-007-0337-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0337-3

Keywords

Navigation