Skip to main content
Log in

Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An unusual propionigenic bacterium was isolated from the intestinal tract of the soil-feeding termite Thoracotermes macrothorax. Strain TmPN3 is a motile, long rod that stains gram-positive, but reacts gram-negative in the KOH test. It forms terminal endospores and ferments lactate, glucose, lactose, fructose, and pyruvate to propionate and acetate via the methyl-malonyl-CoA pathway. Propionate and acetate are formed at a ratio of 2:1, typical of most propionigenic bacteria. Under a H2/CO2 atmosphere, the fermentation product pattern of glucose, fructose, and pyruvate shifts towards propionate formation at the expense of acetate. Cell suspensions reduce oxygen with lactate, glucose, glycerol, or hydrogen as electron donor. In the presence of oxygen, the product pattern of lactate fermentation shifts from propionate to acetate production. 16S rRNA gene sequence analysis showed that strain TmPN3 is a firmicute that clusters among the Acidaminococcaceae, a subgroup of the Clostridiales comprising obligately anaerobic, often endospore-forming bacteria that possess an outer membrane. Based on phenotypic differences and less than 92% sequence similarity to the 16S rRNA gene sequence of its closest relative, the termite hindgut isolate Acetonema longum, strain TmPN3T is proposed as the type species of a new genus, Sporotalea propionica gen. nov. sp. nov. (DSM 13327T, ATCC BAA-626T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baena S, Fardeau M-L, Woo THS, Ollivier B, Labat M, Patel BKC (1999) Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, Selenomonas acidaminophila and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 49:969–974

    PubMed  CAS  Google Scholar 

  • Bauer S, Tholen A, Overmann J, Brune A (2000) Characterization of abundance and diversity of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 173:126–137

    Article  PubMed  CAS  Google Scholar 

  • Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444

    Article  PubMed  CAS  Google Scholar 

  • Biebl H, Schwab-Hanisch H, Spröer C, Lünsdorf H (2000) Propionispora vibrioides nov. gen., nov. sp., a new gram-negative, spore-forming anaerobe that ferments sugar alcohols. Arch Microbiol 174:239–247

    Article  PubMed  CAS  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980) Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae). J Gen Microbiol 117:393–403

    PubMed  CAS  Google Scholar 

  • Blenden DC, Goldberg HS (1965) Silver impregnation stain for Leptospira and flagella. J Bacteriol 89:899–900

    PubMed  CAS  Google Scholar 

  • Boga H, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786

    Article  PubMed  CAS  Google Scholar 

  • Boga HI, Ludwig W, Brune A (2003) Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol 53:1397–1404

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA (2001) The genus Sporomusa. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds), The prokaryotes: an online electronic resource for the microbiological community, 3rd edn, release 3.5. Springer, Berlin Heidelberg New York. http://www.141.150.157.117:8080/prokPUB/index.htm

  • Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288

    Article  CAS  Google Scholar 

  • Brune A (2005) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds), The prokaryotes: an online electronic resource for the microbiological community, 3rd edn, release 3.20. Springer, Berlin Heidelberg New York. http://141.150.157.117:8080/prokPUB/index.htm

  • Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121-1127

    Article  CAS  Google Scholar 

  • Brune A, Schink B (1992) Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch Microbiol 157:417–424

    Article  CAS  Google Scholar 

  • Buckel W (2001) Unusual enzymes involved in five pathways of glutamate fermentation. Appl Microbiol Biotechnol 57: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu M-Y, LeGall J, Fareleira P, Santos H, Xavier AV (1993) Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 193:100–105

    Article  PubMed  CAS  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    Article  PubMed  CAS  Google Scholar 

  • Das A, Coulter ED, Kurtz DM Jr, Ljungdahl LG (2001) Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase-rubredoxin and rubrerythrin—type A flavoprotein—high-molecular-weight rubredoxin. J Bacteriol 183:1560–1567

    Article  PubMed  CAS  Google Scholar 

  • Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr (2005) Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol 187:2020–2029

    Article  PubMed  CAS  Google Scholar 

  • Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151:421–426

    Article  CAS  Google Scholar 

  • Dickerson RE, Timkovich R (1975) Cytochromes c. In: Boyer PD (ed) The enzymes, vol XI, part A. Academic, New York, pp 397–547

  • Diekert G, Wohlfarth G (1994) Metabolism of homoacetogens. Antonie v. Leeuwenhoek 66:209–221

    Article  CAS  Google Scholar 

  • Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890

    Article  PubMed  CAS  Google Scholar 

  • Garrity GM, Holt JG (2001) Taxonomic outline of the Archaea and bacteria, 2nd edn. In: Boone DR, Castenholz RW (eds), Bergey’s manual of systematic bacteriology, vol 1. Springer, Berlin Heidelberg New York, pp 161–162

  • Gregerson T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  • Haikara A, Helander I (2001) Pectinatus, Megasphaera and Zymophilus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds), The prokaryotes: an online electronic resource for the microbiological community, 3rd edn, release 3.5. Springer, Berlin Heidelberg New York. http://141.150.157.117:8080/prokPUB/index.htm

  • Halebian S, Harris B, Finegold SM, Rolfe RD (1981) Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448

    PubMed  CAS  Google Scholar 

  • Helander IM, Haikara A, Sadovskaya I, Vinogradov E, Salkinoja-Salonen MS (2004) Lipopolysaccharides of anaerobic beer spoilage bacteria of the genus Pectinatus—lipopolysaccharides of a Gram-positive genus. FEMS Microbiol Rev 28:543–552

    Article  PubMed  CAS  Google Scholar 

  • Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283

    Article  CAS  Google Scholar 

  • Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291

    Article  CAS  Google Scholar 

  • Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov. an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156:91–98

    Article  PubMed  CAS  Google Scholar 

  • Kappler A, Brune A (1999) Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl Soil Ecol 13:219–229

    Article  Google Scholar 

  • Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol Biochem 34:221–227

    Article  CAS  Google Scholar 

  • Karnholz A, Küsel K, Gößner A, Schramm A, Drake HL (2002) Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68:1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Kresge N, Simoni RD, Hill RL (2005) The discovery of heterotrophic carbon dioxide fixation by Harland G. Wood J Biol Chem 280:155–157

    Google Scholar 

  • Kuhner CH, Frank C, Grießhammer A, Schmittroth M, Acker G, Gößner A, Drake HL (1997) Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 47:352–358

    PubMed  CAS  Google Scholar 

  • Küsel K, Karnholz A, Trinkwalter T, Devereux R, Acker G, Drake HL (2001) Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741

    Article  PubMed  Google Scholar 

  • Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M (2001) The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett 496:40–43

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, 27 other authors (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Nanninga HJ, Drent WJ, Gottschal JC (1987) Fermentation of glutamate by Selenomonas acidaminophila sp. nov. Arch Microbiol 147:152–157

    Article  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613

    PubMed  CAS  Google Scholar 

  • Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 229–289

    Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  PubMed  CAS  Google Scholar 

  • Pritchard GG, Wimpenny JW, Morris HA, Lewis MW, Hughes DE (1977) Effects of oxygen on Propionibacterium shermanii grown in continuous culture. J Gen Microbiol 102:223–233

    PubMed  CAS  Google Scholar 

  • Rosner B, Schink B (1990) Propionate acts as carboxylic group acceptor in aspartate fermentation by Propionibacterium freudenreichii. Arch Microbiol 155:46–51

    Article  CAS  Google Scholar 

  • Schauder R, Schink B (1989) Anaerovibrio glycerini sp. nov., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. Arch Microbiol 152:473–478

    Article  CAS  Google Scholar 

  • Schink B, Thompson ET, Zeikus JG (1982) Characterization of Propionispira arboris gen. nov. sp. nov., a nitrogen fixing anaerobe common to wetwood of living trees. J Gen Microbiol 128:2771–2779

    CAS  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    PubMed  CAS  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003a) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    Article  CAS  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003b) Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024

    Article  CAS  Google Scholar 

  • Schultz JE, Breznak JA (1978) Heterotrophic bacteria present in hindguts of wood-eating termites Reticulitermes flavipes (Kollar). Appl Environ Microbiol 35:930–936

    PubMed  CAS  Google Scholar 

  • Seedorf H, Dreisbach A, Hedderich R, Shima S, Thauer RK (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182:126–137

    Article  PubMed  CAS  Google Scholar 

  • Springer N, Ludwig W, Drozanski V, Amann R, Schleifer K-H (1992) The phylogenetic status of Sarcobium lyticum, an obligate intracellular parasite of small amoebae. FEMS Microbiol Lett 96:199–202

    Article  CAS  Google Scholar 

  • Strömpl C, Tindall BJ, Jarvis GN, Lünsdorf H, Moore ERB, Hippe H (1999) A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 49:1861–1872

    Article  PubMed  Google Scholar 

  • Strömpl C, Tindall BJ, Lünsdorf H, Wong T-Y, Moore ERB, Hippe H (2000) Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov. Int J Syst Evol Microbiol 50:101–106

    PubMed  Google Scholar 

  • Süßmuth R, Eberspächer J, Haag R, Springer W (1987) Biochemisch-mikrobiologisches Praktikum. Thieme Verlag, Stuttgart

    Google Scholar 

  • Tholen A (1999) Der Termitendarm als strukturiertes Ökosystem: Untersuchung der Mikrobiota und der Stoffflüsse im Darm von Reticulitermes flavipes und Cubitermes spp. PhD Thesis, University of Konstanz, Konstanz

  • Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505

    PubMed  CAS  Google Scholar 

  • Tholen A, Brune A (2000) The impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes, determined by microinjection of radiotracers. Environ Microbiol 2:436–449

    Article  PubMed  CAS  Google Scholar 

  • Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149

    Article  CAS  Google Scholar 

  • Thompson TE, Conrad R, Zeikus JG (1984) Regulation of carbon and electron flow in Propionispira arboris: physiological function of hydrogenase and its role in homopropionate formation. FEMS Microbiol Lett 22:265–271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant of “Deutsche Forschungsgemeinschaft” (DFG). H.I.B. was supported by a scholarship from the “Deutscher Akademischer Austauschdienst” (DAAD). We thank Edouard Miambi for collecting termites, and Bernhard Schink for continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boga, H.I., Ji, R., Ludwig, W. et al. Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Arch Microbiol 187, 15–27 (2007). https://doi.org/10.1007/s00203-006-0168-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0168-7

Keywords

Navigation