Skip to main content

Advertisement

Log in

Metabolism of lactose by Clostridium thermolacticum growing in continuous culture

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The objective of the present study was to characterize the metabolism of Clostridium thermolacticum, a thermophilic anaerobic bacterium, growing continuously on lactose (10 g l−1) and to determine the enzymes involved in the pathways leading to the formation of the fermentation products. Biomass and metabolites concentration were measured at steady-state for different dilution rates, from 0.013 to 0.19 h−1. Acetate, ethanol, hydrogen and carbon dioxide were produced at all dilution rates, whereas lactate was detected only for dilution rates below 0.06 h−1. The presence of several key enzymes involved in lactose metabolism, including beta-galactosidase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate:ferredoxin oxidoreductase, acetate kinase, ethanol dehydrogenase and lactate dehydrogenase, was demonstrated. Finally, the intracellular level of NADH, NAD+, ATP and ADP was also measured for different dilution rates. The production of ethanol and lactate appeared to be linked with the re-oxidation of NADH produced during glycolysis, whereas hydrogen produced should come from reduced ferredoxin generated during pyruvate decarboxylation. To produce more hydrogen or more acetate from lactose, it thus appears that an efficient H2 removal system should be used, based on a physical (membrane) or a biological approach, respectively, by cultivating C. thermolacticum with efficient H2 scavenging and acetate producing microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bauchop T, Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J Gen Microbiol 23:457–469

    PubMed  CAS  Google Scholar 

  • Benthin S, Nielsen J, Villadsen J (1994) Galactose expulsion during lactose metabolism in Lactococcus lactis subsp. cremoris FD1 due to dephosphorylation of intracellular galactose-6-phosphate. Appl Environ Microbiol 60:1254–1259

    PubMed  CAS  Google Scholar 

  • Champluvier B, Decallonne J, Rouxhet PG (1989) Influence of sugar source (lactose, glucose, galactose) on 2,3-butanediol production by Klebsiella oxytoca NRRL-B199. Arch Microbiol 152:411–414

    Article  PubMed  CAS  Google Scholar 

  • Chen YYM, Betzenhauser MJ, Snyder JA, Burne RA (2002) Pathways for lactose/galactose catabolism by Streptococcus salivarius. FEMS Microbiol Lett 209:75–79

    Article  PubMed  CAS  Google Scholar 

  • Church DL, Rabin HR, Laishley EJ (1988) Role of hydrogenase 1 of Clostridium pasteurianum in the reduction of metronidazole. Biochem Pharmacol 37:1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Cocaign-Bousquet M, Even S, Lindley ND, Loubiere P (2002) Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Appl Microbiol Biotechnol 60:24–32

    Article  PubMed  CAS  Google Scholar 

  • Collet C, Schwitzguébel JP, Péringer P (2003) Improvement of acetate production from lactose by growing Clostridium thermolacticum in mixed batch culture. J Appl Microbiol 95:824–831

    Article  PubMed  CAS  Google Scholar 

  • Collet C, Adler N, Schwitzguébel JP, Péringer P (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 29:1479–1485

    Article  CAS  Google Scholar 

  • Collet C, Gaudard O, Péringer P, Schwitzguébel JP (2005) Acetate production from lactose by Clostridium thermolacticum and hydrogen-scavenging microorganisms in continuous culture – Effect of hydrogen partial pressure. J Biotechnol 118:328–338

    Article  PubMed  CAS  Google Scholar 

  • Desvaux M, Guedon E, Petitdemange H (2001a) Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J Bacteriol 183:119–130

    Article  CAS  Google Scholar 

  • Desvaux M, Guedon E, Petitdemange H (2001b) Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiol 147:1461–1471

    CAS  Google Scholar 

  • Even S, Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1999) Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Metab Eng 1:198–205

    Article  PubMed  CAS  Google Scholar 

  • Fardeau ML, Ollivier B, Garcia JL, Patel BK (2001) Transfer of Thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov. comb. nov. Int J System Evol Microbiol 51:1127–1131

    CAS  Google Scholar 

  • Freier D, Gottschalk G (1987) L(+)-lactate dehydrogenase of Clostridium acetobutylicum is activated by fructose-1,6-bisphosphate. FEMS Microbiol Lett 43:229–233

    CAS  Google Scholar 

  • Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287

    PubMed  CAS  Google Scholar 

  • Germain P, Toukourou F, Donaduzzi L (1986) Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum. Appl Microbiol Biotechnol 24:300–305

    Article  CAS  Google Scholar 

  • Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD+ ratio and ATP pool. J Bacteriol 176:6433–6438

    PubMed  CAS  Google Scholar 

  • Girbal L, Croux C, Vasconcelos I, Soucaille P (1995) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287–297

    Article  CAS  Google Scholar 

  • Guedon E, Payot S, Desvaux M, Petitdemange H (1999) Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol 181:3262–3269

    PubMed  CAS  Google Scholar 

  • Heitmann T, Wenzig E, Mersmann A (1996) A kinetic model of growth and product formation of the anaerobic microorganism Thermoanaerobacter thermohydrosulfuricus. J Bacteriol 50: 213–223

    CAS  Google Scholar 

  • Hickey MW, Hillier AJ, Jag GR (1986) Transport and metabolism of lactose, glucose and galactose in homofermentative Lactobacilli. Appl Environ Microbiol 51: 825–831

    PubMed  CAS  Google Scholar 

  • Hutkins RW, Ponne C (1991) Lactose uptake driven by galactose efflux in Streptococcus thermophilus – evidence for a galactose-lactose antiporter. Appl Environ Microbiol 57:941–944

    PubMed  CAS  Google Scholar 

  • Jungermann K, Thauer RK, Leimstoll G, Decker K (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta 305:268–280

    Article  PubMed  CAS  Google Scholar 

  • Le Ruyet P, Dubourguier HC, Albagnac G (1985) Characterization of Clostridium thermolacticum sp. nov., a hydrolytic thermophilic anaerobe producing high amounts of lactate. System Appl Microbiol 6:196–202

    CAS  Google Scholar 

  • Lin WR, Peng Y, Lew S, Lee CC, Hsu JJ, Hamel JF, Demain AL (1998) Purification and characterization of acetate kinase from Clostridium thermocellum. Tetrahedron 54:15915–15925

    Article  CAS  Google Scholar 

  • Lovitt RW, Shen GJ, Zeikus JG (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809–2815

    PubMed  CAS  Google Scholar 

  • Meinecke B, Bertram J, Gottschalk G (1989) Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum. Arch Microbiol 152: 244–250

    Article  PubMed  CAS  Google Scholar 

  • Melchiorsen CR, Jokumsen KV, Villadsen J, Israelsen H, Arnau J (2002) The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Appl Microbiol Biotechnol 58:338–344

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, New York

  • Payot S, Guedon E, Cailliez C, Gelhaye E, Petitdemange H (1998) Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. Microbiol 144:375–384

    Article  CAS  Google Scholar 

  • Payot S, Guedon E, Gelhaye E, Petitdemange H (1999) Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose. Res Microbiol 150:465–473

    Article  PubMed  CAS  Google Scholar 

  • Russell JB, Bond DR, Cook GM (1996) The fructose diphosphate/phosphate regulation of carbohydrate metabolism in low G+C gram-positive anaerobes. Res Microbiol 147:528–535

    Article  PubMed  CAS  Google Scholar 

  • Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 183:1748–1754

    Article  PubMed  CAS  Google Scholar 

  • Sridhar J, Eiteman MA (2001) Metabolic flux analysis of Clostridium thermosuccinogenes: effects of pH and culture redox potential. Appl Biochem Biotechnol 94:51–69

    Article  PubMed  CAS  Google Scholar 

  • Sridhar J, Eiteman MA, Wiegel JW (2000) Elucidation of enzymes in fermentation pathways used by Clostridium thermosuccinogenes growing on inulin. Appl Environ Microbiol 66: 246–251

    Article  PubMed  CAS  Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Ant Van Leeuwenhoeck 66:271–294

    Article  CAS  Google Scholar 

  • Talabardon M, Schwitzguébel JP, Péringer P (2000a) Anaerobic thermophilic fermentation for acetic acid production from milk permeate. J Biotechnol 76:83–92

    Article  CAS  Google Scholar 

  • Talabardon M, Schwitzguébel JP, Péringer P, Yang ST (2000b) Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor. Biotechnol Prog 16:1008–1017

    Article  CAS  Google Scholar 

  • Thauer RK, Kroeger A (1984) Energy metabolism of two rumen bacteria with special reference to growth efficiency. In: Gilchrist FMC (ed) Herbivore nutrition in the subtropics and tropics. The Science Press, Craighall, pp 389–405

    Google Scholar 

  • Uyeda K, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. 3. Purification and properties of the enzyme. J Biol Chem 246:3111–3119

    PubMed  CAS  Google Scholar 

  • Vancanneyt M, de Vos P, Vennens L, de Ley J (1990) Lactate and ethanol dehydrogenase activities in continuous cultures of Clostridium thermosaccharolyticum LMG 6564. J Gen Microbiol 136:1945–1951

    CAS  Google Scholar 

  • Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443–1450

    PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Winzer K, Lorenz K, Durre P (1997) Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. Microbiol 143:3279–3286

    CAS  Google Scholar 

  • Wong TY, Pei H, Bancroft K, Childers GW (1995) Diauxic growth of Azotobacter vinelandii on galactose and glucose: regulation of glucose transport by another hexose. Appl Environ Microbiol 61:430–433

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss Federal Office for Education and Science, in the framework of COST Action 841 (project C00.0051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Schwitzguébel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collet, C., Girbal, L., Péringer, P. et al. Metabolism of lactose by Clostridium thermolacticum growing in continuous culture. Arch Microbiol 185, 331–339 (2006). https://doi.org/10.1007/s00203-006-0098-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0098-4

Keywords

Navigation