Skip to main content
Log in

Modeling of lightning surges on a grounding system of a tower cascade

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Propagation of electromagnetic lightning transients modeling in the electrical network is not an easy task because of the large dimensions of its various equipment (length of power lines and ground wires, height of towers…). The full wave numerical methods well known in modeling, generally based on the mesh of the electromagnetic device to construct a system of equations, can prove to be cumbersome or even inapplicable to treat this problem. To study the lightning direct impact on a towers cascade equipped with its lines and earth connections, this article presents a realistic approach based on the transmission line equations. This new modeling, developed directly in the frequency domain, allows taking into account the frequency variations of the ground electrical characteristics in order to analyze properly the grounding systems transient behavior, particularly the Ground Power Rise during a back-flashover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Grcev L (1996) Computer analysis of transient voltages in large grounding systems. IEEE Trans Power Delivery 11(2):815–823. https://doi.org/10.1109/61.489339

    Article  Google Scholar 

  2. Nekhoul B, Labie P, Zgainski FX, Meunier G (1996) Calculating the impedance of a grounding systems. IEEE Trans Magn 32(3):1509–1512

    Article  Google Scholar 

  3. Nekhoul B, Guerin C, Labie P, Meunier G, Feuillet R, Brunotte X (1995) A finite element method for calculating the electromagnetic fields generated by substation grounding systems. IEEE Trans Magn 31(3):2150–2153

    Article  Google Scholar 

  4. Ala G et al (2008) Finite difference time domain simulation of earth electrodes soil ionisation under lightning surge condition. IET Sci Meas Technol 2(3):134–145

    Article  MathSciNet  Google Scholar 

  5. Yutthagowith P, Ametani A, Nagaoka N, Baba Y (2011) Application of the partial element equivalent circuit method to analysis of transient potential rises in grounding systems. IEEE Transact Electromag Compct 53(3):726–736. https://doi.org/10.1109/TEMC.2010.2077676

    Article  Google Scholar 

  6. Huangfu Y et al (2015) Modeling and insulation performance analysis of composite transmission line tower under lightning overvoltage. IEEE Trans Magn 51(3):1–4

    Article  MathSciNet  Google Scholar 

  7. Yamanaka A et al (2020) Circuit model of vertical double-circuit transmission tower and line for lightning surge analysis considering tem-mode formation. IEEE Trans Power Deliv 35(5):2471–2480

    Article  Google Scholar 

  8. Thang TH, Baba Y, Itamoto N, Rakov VA (2017) FDTD simulation of back-flashover at the transmission-line tower struck by lightning considering ground-wire corona and operating voltages. Electr Power Syst Res 159:17–23. https://doi.org/10.1016/j.epsr.2017.08.021

    Article  Google Scholar 

  9. Sunde ED (1968) Earth Conduction Effects in Transmission Systems. Dover publications, New York

    Google Scholar 

  10. Ametani A (1994) Frequency-dependent impedance of vertical conductors and a multiconductor tower model. IEEE Proceed- Generat Transm Distribut 141(4):339. https://doi.org/10.1049/ip-gtd:19949988

    Article  Google Scholar 

  11. Ametani A, Ishihara A (1994) Investigation of impedance and line parameters of a finite length multiconductor system. Electr Eng Japan 114(4):83–92. https://doi.org/10.1002/eej.4391140408

    Article  Google Scholar 

  12. Wedepohl LM, Wilcox DJ (1973) Transient analysis of underground power-transmission systems: system-model and wave-propagation characteristics. Proc IEEE 120(2):253–260

    Google Scholar 

  13. Kaouche S, Nekhoul B, Kerroum K, El Khamlichi DK, Paladian F (2007) Induced lightning disturbances in a network of aerial shielded cables. Ann Telecommun 62(7–8):894–924

    Article  Google Scholar 

  14. Paul CR (1994) Analysis of Multiconductor Transmission Lines. John Wiley & Sons Inc, New York

    Google Scholar 

  15. Harid N, Griffiths H, Mousa S, Clark D, Robson S, Haddad A (2015) On the Analysis of Impulse Test Results on Grounding Systems. IEEE Trans Ind Appl 51(6):5324–5334. https://doi.org/10.1109/TIA.2015.2442517

    Article  Google Scholar 

  16. IEEE Std 81-1983: IEEE Guide for measuring earth resistivity, ground impedance, and earth surface potentials of a ground system part 1: normal measurements. Power system instrumentation and measurements committee of IEEE power engineering society, 11 March 1983. https://doi.org/10.1109/IEEESTD.1983.82378

  17. Burke G (1992) Numerical electromagnetic code (NEC-4)-method of moment, UCRL-MA-109338. Lawrence Livermore National Laboratory, California

    Google Scholar 

  18. Harrington RF (1968) Field Computation by Moment Method. Macmillan, New York

    Google Scholar 

  19. Grcev L (2009) Modeling of grounding electrodes under lightning currents. IEEE Trans Electromagn Compat 51(3):559–571

    Article  Google Scholar 

  20. Rachidi F et al (2001) Current and electromagnetic field associated with lightning-return strokes to tall towers. IEEE Trans Electromagn Compat 43(3):356–367

    Article  Google Scholar 

  21. Cavka D, Mora N, Rachidi F (2014) A comparison of frequency-dependent soil models: application to the analysis of grounding systems. IEEE Transact Electromagn Compat 56(1):177–187. https://doi.org/10.1109/TEMC.2013.2271913

    Article  Google Scholar 

  22. Visacro S, Alipio R (2012) Frequency dependence of soil parameters: Experimental results, predicting formula and influence on the lightning response of grounding electrodes. IEEE Trans Power Delivery 27(2):927–935. https://doi.org/10.1109/TPWRD.2011.2179070

    Article  Google Scholar 

  23. Longmire CL, Smith KS (1975) A universal impedance for soils. Topical Report for Period, 1 July 1975–30 September 1975. Defense Nuclear Agency, Santa Barbara, CA, USA, Contract No. DNA 001-75-C-0094. https://apps.dtic.mil/sti/citations/ADA025759

  24. Salarieh B (2019) Electromagnetic transient modelling of power transmission line tower and tower-footing grounding system. PhD thesis in science, University of Manitoba, CANADA.

  25. Grcev L (2010) High-frequency grounding. In: Cooray V (ed) Lightning Protection. Institution of Engineering and Technology, pp 503–530. https://doi.org/10.1049/PBPO058E_ch10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Nekhoul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The impedance [Z] and admittance [Y] expressions for grounding conductors, for towers and the ground's impedance expression of an overhead line above a finite conductivity soil

1.1 A.1. Expressions of per-unit length impedance [Z] and admittance [Y] of grounding conductors:

The filiform nature of the conductors constituting the grounding system and the significant spectral content of the fault currents not exceeding 10 MHz, are factors favoring the modeling of a grounding by the transmission lines theory.

The representation of a simple electrode buried horizontally or vertically is introduced for the first time by E. D. Sunde [9]. In his book, E. D. Sunde offers a large work devoted to the calculation of the per-unit length parameters of earth electrodes mainly based on images theory [9]. (Fig. 17).

Fig. 17
figure 17

Electrodes buried horizontally or vertically

  • For an electrode buried horizontally [9]: For an electrode of “l” length buried horizontally at a depth h, in a soil of finite conductivity, the per-unit length parameters are as follows:

    $$ G = \frac{\pi }{{\rho_{{{\text{sol}}}} .\left[ {ln\left( {\frac{2.l}{{\sqrt {2.h.r} }}} \right) - 1} \right]}} $$
    (A.1)
    $$ C = { }\frac{{\pi .\varepsilon_{{{\text{sol}}}} }}{{\left[ {\ln \left( {\frac{2l}{{\sqrt {2.h.r} }}} \right) - 1} \right]}} $$
    (A.2)
    $$ L = \frac{\mu }{\pi }.\left[ {\ln \left( {\frac{2.l}{{\sqrt {2.h.r} }}} \right) - 1} \right] $$
    (A.3)
    $$ R = \frac{{\rho_{C} }}{S} $$
    (A.4)

    \(\rho_{{{\text{soil}}}}\) and \(\varepsilon_{{{\text{soil}}}}\) are the electrical resistivity and permittivity of the soil, \(r\) the radius of the electrode, \(\rho_{C}\) its resistivity and \(S = \pi .r^{2}\) its section.

  • For a vertical rod [9]: By the theory of images, E. D. Sunde subtracts the expressions of the per-unit length parameters of a vertical rod, of “l” length, which are [9]:

    $$ G = { }\frac{2\pi }{{\rho_{s} .\left[ {ln \left( {\frac{4.l}{r}} \right) - 1} \right]}} $$
    (A.5)
    $$ C = \frac{{2\pi .\varepsilon_{s} }}{{\left[ {\ln \left( {\frac{4.l}{r}} \right) - 1} \right]}} $$
    (A.6)
    $$ L = \frac{\mu }{2\pi }\left[ {\ln \left( {\frac{4.l}{r}} \right) - 1} \right] $$
    (A.7)

The internal per-unit length resistance R keeps the same expression as a horizontal electrode, (the equation (A.4)).

1.2 A.2. Expressions of impedance [Z] and admittance [Y] of towers:

In our study, we opt for the modeling of the "tower – grounding" system by the transmission lines theory, taking a more complete modeling and in order to be as close as possible to reality (study of complex structures) and to have a convenient implementation with a tolerable calculation time.

  • The impedance and admittance of the vertical tower segments: Ametani et al Approach [10]

Consider a multi-conductor system of vertical columns (Fig. 18). For this system A. Ametani et al. [10] expresses the mutual impedance between two cylindrical vertical conductors, as follows:

$$ Z_{ij} = j{\upomega }\left( {{\upmu }_{0} /2{\uppi }} \right).P_{ij} $$
(A.8)
Fig. 18
figure 18

A multi-conductor system of vertical columns

With:

$$ P_{ij} = \left( {M + M^{\prime}} \right)/2.X_{ij} $$
(A.9)
$$ M = \mathop \int \limits_{{h_{m} }}^{{h_{n} }} \mathop \int \limits_{{h_{r} }}^{{h_{s} }} \frac{{{\text{d}}x_{i} {\text{d}}x_{j} }}{S}\;{\text{and}}\;M^{\prime} = \mathop \int \limits_{{h_{m} }}^{{h_{n} }} \mathop \int \limits_{{ - h_{r}^{^{\prime}} }}^{{h_{s}^{^{\prime}} }} \frac{{{\text{d}}x_{i} {\text{d}}x_{j}^{^{\prime}} }}{{S^{\prime}}} $$
(A.10)

Whose different geometric dimensions, see (Fig. 18), are calculated as follows:

$$ S = \sqrt {\left( {y_{i} - y_{j} } \right)^{2} + \left( {x_{i} - x_{j} } \right)^{2} } = \sqrt {\left( {d^{2} + \left( {x_{i} - x_{j} } \right)^{2} } \right)} $$
(A.11)
$$ S^{\prime} = \sqrt {\left( {d^{2} + \left( {x_{i} - x^{\prime}_{j} } \right)^{2} } \right)} $$
(A.12)
$$ X_{ii} = h_{n} - h_{m} ; X_{jj} = h_{S} - h_{r} ; X_{ij} = \left( {X_{ii} + X_{jj} } \right)/2 $$
(A.13)
$$ h\prime_{r} = h_{r} + 2h_{e} ; h\prime_{S} = h_{S} + 2h_{e} ; h_{e} = \sqrt {\rho_{{{\text{soil}}}} /j\omega \mu_{{{\text{soil}}}} } $$
(A.14)

A. Ametani [10] formulates the following expression for the coefficients \({P}_{ij}\):

$$ P_{ij} = \left( {\frac{1}{{2X_{ij} }}} \right)\left[ \begin{gathered} - h_{1} lnA_{1} + h_{2} lnA_{2} + h_{3} lnA_{3} - h_{4} lnA_{4} + a_{1} - a_{2} \hfill\\ - a_{3} + a_{4} - \left( {h_{5} lnA_{5} - h_{6} lnA_{6} - h_{7} lnA_{7} } \right. \hfill \\ \qquad \left.{ + h_{8} lnA_{8} - a_{5} + a_{6} + a_{7} - a_{8}} \right) \hfill \\ \end{gathered} \right] $$
(A.15)

In which:

\(h_{1} = h_{n} - h_{S}\),\( h_{2} = h_{m} - h_{S}\),\( h_{3} = h_{n} - h_{r}\),

\(h_{4} = h_{m} - h_{r}\),\( h_{5} = h_{n} + h_{S} + 2h_{e}\),

\(h_{6} = h_{m} + h_{S} + 2h_{e}\),\( h_{7} = h_{n} + h_{r} + 2h_{e}\),

$$ h_{8} = h_{m} + h_{r} + 2h_{e} $$
(A.16)
$$ a_{k} = \sqrt {\left( {h_{k}^{2} + d^{2} } \right)} ;A_{k} = a_{k} + h_{k } , k = \left( {1,2 \ldots .8 } \right) $$
(A.17)

The self-impedance of a conductor i is calculated from the self-coefficients \( P_{ii}\), which are obtained by operating, in the expression of the \( P_{ij}\), the following changes:\( d = r_{i} , h_{S} = h_{n}\) and \( h_{r} = h_{m}\). This gives:

$$ Z_{ii} = j{\upomega }\left( {{\upmu }_{0} /2{\uppi }} \right).P_{ii} $$
(A.18)

Finally, in order to calculate the self per-unit length capacity, the soil is considered perfectly conductive, by laying the penetration depth \(h_{e} = 0\) in the expression of the coefficients \(P_{ii}\) to have the coefficients \(P_{0ii} \) characterizing a perfect soil [10]. Which gives:

$$ C = 2.\pi \varepsilon_{0} .\;P_{0ii}^{ - 1} $$
(A.19)

The per-unit length impedance and admittance are \(\underline {Z} = Z_{ii}\) and \(\underline {Y} = j\omega C\).

  • The impedance and admittance of the horizontal arms: Ametani et al Approach [11]

Either a multi-conductor system of finite lengths, whose return is through the ground (Fig. 19).

Fig. 19
figure 19

Multi-conductor system of finite lengths

The self and mutual per-unit length impedances of this system can be determined as follows [11]:

$$ Z_{ij} = j{\upomega }\left( {{\upmu }_{0} /2{\uppi }} \right).P_{ij}^{^{\prime}} /l $$
(A.20)

With:

$$ P_{ij}^{^{\prime}} = \left( {M_{d} + M_{i} } \right)/2 $$
(A.21)

\(M_{d} \): Direct mutual inductance between conductors i and j [11];

\(M_{i} \): The mutual inductance between conductor i and image j' of conductor j relative to the ground plane.

If the terminal of conductor j,\( x_{j1} = 0\), and the terminals \( x_{i} = x_{j2} = l,\) the coefficients \(P_{ij}^{^{\prime}}\) are expressed:

$$ P_{ij}^{^{\prime}} = \left[ {l\ln \frac{{1 + \sqrt {1 + \left( {d_{ij} /l} \right)^{2} } }}{{1 + \sqrt {1 + \left( {S_{ij} /l} \right)^{2} } }} + l ln\frac{{S_{ij} }}{{d_{ij} }} - \sqrt {l^{2} + d_{ij}^{2} } + \sqrt {l^{2} + S_{ij}^{2} } + d_{ij} - S_{ij} } \right] $$
(A.22)

Hence:

$$ d_{ij} = \sqrt {\left( {h_{i} - h_{j} } \right)^{2} + y^{2} } $$
(A.23)
$$ S_{ij} = \sqrt {\left( {h_{i} + h_{j} + 2h_{S} } \right)^{2} + y^{2} } , \left( {y = y_{ij} } \right) $$
(A.24)
$$ h_{S} = \sqrt {\rho_{{{\text{soil}}}} /\left( {j\omega \mu_{{{\text{soil}}}} } \right)} $$
(A.25)

In order to have the self per-unit length impedance \( Z_{ii} = j{\upomega }\left( {{\upmu }_{0} /2{\uppi }} \right).P_{ii}^{^{\prime}} /l\), we put \( j = i , d_{ij} = r_{i} , S_{ij} = 2\left( {h_{i} + h_{S} } \right)\).

For a perfectly conductive ground \( \left( {\rho_{soil} = 0} \right)\), skin depth \( h_{s} = 0\), this gives for the coefficients \(P_{ij}^{^{\prime}} \)[11]:

$$ P_{0ij}^{^{\prime}} = \bigg[ {l\ln \frac{{1 + \sqrt {1 + \left( {d_{ij} /l} \right)^{2} } }}{{1 + \sqrt {1 + \left( {D_{ij} /l} \right)^{2} } }} + l \ln\frac{{D_{ij} }}{{d_{ij} }} - \sqrt {l^{2} + d_{ij}^{2} }+ \sqrt {l^{2} + D_{ij}^{2} } + d_{ij} - D_{ij} } \bigg] $$
(A.26)

For which:

$$ D_{ij} = \sqrt {\left( {h_{i} + h_{j} } \right)^{2} + y_{ij}^{2} } $$
(A.27)

If we put \( j = i , d_{ij} = r_{i} , D_{ij} = 2h_{i}\), in the expression of \( P_{0ij}^{^{\prime}}\), we come to the self-coefficients \( P_{0ii}^{^{\prime}}\) and we then deduce the self per-unit length capacity of a finite length horizontal conductor:

$$ C = 2\pi \varepsilon_{0} .\left( {P_{0ii}^{^{\prime}} /l} \right)^{ - 1} $$
(A.28)

Idem, the per-unit length impedance and admittance are therefore: \(\underline {Z} = Z_{ii}\) and \(\underline {Y} = j\omega C\).

1.3 A.3. Expression of the ground impedance of an overhead line above a finite conductivity soil:

For a multi-conductor overhead line (Fig. 20)whose return is via the ground, E. D. Sunde [9], in the form of an integral, gives the correction terms (due to the ground’s finite conductivity) of the per-unit length impedance.

Fig. 20
figure 20

Multi-conductor overhead line above finite conductivity ground

On a frequency band of a few MHz, Sunde [9] offers an excellent logarithmic approximation for these self and mutual correction terms, such as:

$$ Z_{sii} \cong \frac{{j\omega \mu_{0} }}{2\pi }.ln\left( {\frac{{1 + \gamma_{s} .h_{i} }}{{\gamma_{s} .h_{i} }}} \right) $$
(A.29)
$$ Z_{sij} \cong \frac{{j\omega \mu_{0} }}{4\pi }.ln\left( {\frac{{\left( {1 + \gamma_{s} .\left( {\frac{{h_{i} + h_{j} }}{2}} \right)} \right)^{2} + \left( {\gamma_{s} .\frac{{d_{ij}^{^{\prime}} }}{2}} \right)^{2} }}{{\left( {\gamma_{s} .\left( {\frac{{h_{i} + h_{j} }}{2}} \right)} \right)^{2} + \left( {\gamma_{s} .\frac{{d_{ij}^{^{\prime}} }}{2}} \right)^{2} }}} \right) $$
(A.30)

With:

$$ \gamma_{s}^{2} = j\omega \mu_{0} .\left( {\sigma_{{{\text{soil}}}} + j\omega \varepsilon_{0} \varepsilon_{{{\text{rsoil}}}} } \right) $$
(A.31)

\(\sigma_{{{\text{soil}}}}\),\( \varepsilon_{{{\text{rsoil}}}}\) respectively, conductivity, relative permittivity of the soil and \(\gamma_{s}\) is the propagation constant in the soil..

Appendix B: The expressions of the soil electrical parameters variation with frequency

The expressions giving the variation of the soil’s conductivity and relative permittivity as a function of the frequency are as follows:

  • For the Visacro and Alipio formulation [22] :

    $$ \sigma_{{{\text{soil}}}} \left( f \right) = \sigma_{{\text{soil 100Hz}}} \times \left\{ {1 + \left[ {1.2.10^{ - 6} \left( {\frac{1}{{\sigma_{{\text{soil 100Hz}}} }}} \right)^{0.73} } \right]\left( {f - 100} \right)^{0.65} } \right\} $$
    (B.1)
    $$ \varepsilon_{rsoil} \left( f \right) = 7.6.10^{3} .f^{ - 0.4} + 1.3\, for\;f \ge 10 kHz $$
    (B.2)

where \(\sigma_{soil 100Hz} { }\) is the ground conductivity at low frequencies (\(f\) = 100 Hz).

  • For the Longmire and Smith formulation [23] :

    $$ \sigma_{{{\text{soil}}}} \left( f \right) = \sigma_{{\text{soil 0}}} + 2\pi .\varepsilon_{0} \mathop \sum \limits_{n = 1}^{K} \frac{{a_{n} . \left( {\left( \frac{p}{10} \right)^{1.28} . 10^{n - 1} } \right). \left( {\frac{f}{{\left( \frac{p}{10} \right)^{1.28} . 10^{n - 1} }}} \right)^{2} }}{{1 + \left( {\frac{f}{{\left( \frac{p}{10} \right)^{1.28} . 10^{n - 1} }}} \right)^{2} }} $$
    (B.3)
    $$ \varepsilon_{{{\text{rsoil}}}} \left( f \right) = \varepsilon_{\infty } + \mathop \sum \limits_{n = 1}^{K} \frac{{a_{n} }}{{1 + \left( {\frac{f}{{\left( \frac{p}{10} \right)^{1.28} . 10^{n - 1} }}} \right)^{2} }} $$
    (B.4)

With:

$$ \sigma_{{\text{soil 0}}} = \sigma_{{\text{soil 100Hz}}} = 8. 10^{ - 3} .\left( \frac{p}{10} \right)^{1.54} $$
(B.5)

\(p\) is the water percentage in the soil, \(a_{n} { }\) are coefficients shown in the reference [23]. According to Longmire and Smith [23], the soil’s conductivity and relative permittivity, at each frequency, are a function of its water content.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaouche, S., Nekhoul, B. Modeling of lightning surges on a grounding system of a tower cascade. Electr Eng 105, 1125–1139 (2023). https://doi.org/10.1007/s00202-022-01720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01720-3

Keywords

Navigation