Skip to main content

Advertisement

Log in

Speed and current sensor fault-tolerant induction motor drive for electric vehicles based on virtual sensors

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this work, a sensor fault-tolerant architecture (FTA) for induction motor drives used in electric vehicles (EV) is presented. A bank of observers is designed based on representations of the induction motor model in different reference frames. The fault diagnosis is performed by processing a set of residuals obtained from the bank of observers. The diagnosis method is able to differentiate between single and multiple faults as well as identify the faulty sensor. In addition, virtual sensors are used for the control feedback reconfiguration to obtain a continuous operation of a vector control strategy after a sensor fault. Simulation results of an EV with the proposed FTA validate the effectiveness of the proposal and its robustness against parameter variations. Moreover, results shows a fast control reconfiguration and the ability to return to normal operation if the sensors recover from the faulty condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Camargos PH, Caetano RE (2021) A performance study of a high-torque induction motor designed for light electric vehicles applications. Electr Eng. https://doi.org/10.1007/s00202-021-01331-4

    Article  Google Scholar 

  2. Saleeb H, Kassem R, Sayed K (2021) Artificial neural networks applied on induction motor drive for an electric vehicle propulsion system. Electr Eng. https://doi.org/10.1007/s00202-021-01418-y

    Article  Google Scholar 

  3. Adamczyk M, Orlowska-Kowalska T (2019) Virtual current sensor in the fault-tolerant field-oriented control structure of an induction motor drive. Sensors 19(22):4979. https://doi.org/10.3390/s19224979

    Article  Google Scholar 

  4. Aguilera F, de la Barrera P, De Angelo C (2012) Behavior of electric vehicles and traction drives during sensor faults. In: 10th IEEE/IAS international conference on industry applications (INDUSCON), pp 1–7. https://doi.org/10.1109/INDUSCON.2012.6453764

  5. Rkhissi-Kammoun Y, Ghommam J, Boukhnifer M, Mnif F (2019) Two current sensor fault detection and isolation schemes for induction motor drives using algebraic estimation approach. Math Comput Simul 157:39–62. https://doi.org/10.1016/j.matcom.2018.09.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu Y, Stettenbenz M, Bazzi AM (2019) Smooth fault-tolerant control of induction motor drives with sensor failures. IEEE Trans Power Electron 34(4):3544–3552. https://doi.org/10.1109/TPEL.2018.2848964

    Article  Google Scholar 

  7. Gouichiche A, Safa A, Chibani A, Tadjine M (2020) Global fault-tolerant control approach for vector control of an induction motor. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12440

    Article  Google Scholar 

  8. Bourogaoui M, Sethom HBA, Belkhodja IS (2016) Speed/position sensor fault tolerant control in adjustable speed drives: a review. ISA Trans 64:269–284. https://doi.org/10.1016/j.isatra.2016.05.003

    Article  Google Scholar 

  9. Özdemir S (2020) A new stator voltage error-based MRAS model for field-oriented controlled induction motor speed estimation without using voltage transducers. Electr Eng 102(4):2465–2479. https://doi.org/10.1007/s00202-020-01043-1

    Article  Google Scholar 

  10. Verrelli CM, Bifaretti S, Carfagna E, Lidozzi A, Solero L, Crescimbini F, Di Benedetto M (2019) Speed sensor fault tolerant PMSM machines: from position-sensorless to sensorless control. IEEE Trans Ind Appl 55(4):3946–3954. https://doi.org/10.1109/TIA.2019.2908337

    Article  Google Scholar 

  11. Marino R, Scalzi S, Tomei P, Verrelli C (2013) Fault-tolerant cruise control of electric vehicles with induction motors. Control Eng Pract 21(6):860–869. https://doi.org/10.1016/j.conengprac.2013.02.011

    Article  Google Scholar 

  12. Jlassi I, Cardoso AJM (2019) A single method for multiple IGBTs, current-and speed-sensor faults diagnosis in regenerative PMSM drives. IEEE J Emerg Sel Top Power Electron. https://doi.org/10.1109/JESTPE.2019.2918062

    Article  Google Scholar 

  13. Wu C, Guo C, Xie Z, Ni F, Liu H (2018) A signal-based fault detection and tolerance control method of current sensor for PMSM drive. IEEE Trans Ind Electron 65(12):9646–9657. https://doi.org/10.1109/TIE.2018.2813991

    Article  Google Scholar 

  14. Arnanz R, Miguel LJ, Perán JR, Mendoza A (2011) A modified direct torque control with fault tolerance. Control Eng Pract 19(9):1056–1065. https://doi.org/10.1016/j.conengprac.2011.05.007

    Article  Google Scholar 

  15. Dybkowski M, Klimkowski K (2019) Artificial neural network application for current sensors fault detection in the vector controlled induction motor drive. Sensors 19(3):571. https://doi.org/10.3390/s19030571

    Article  Google Scholar 

  16. Azzoug Y, Pusca R, Sahraoui M, Ammar A, Romary R, Marques Cardoso AJ (2019) A single observer for currents estimation in sensor’s fault-tolerant control of induction motor drives. In: International conference on applied automation and industrial diagnostics (ICAAID), vol 1, pp 1–6. https://doi.org/10.1109/ICAAID.2019.8934969

  17. Yu Y, Zhao Y, Wang B, Huang X, Xu D (2018) Current sensor fault diagnosis and tolerant control for VSI-based induction motor drives. IEEE Trans Power Electron 33(5):4238–4248. https://doi.org/10.1109/TPEL.2017.2713482

    Article  Google Scholar 

  18. Aguilera F, de la Barrera PM, De Angelo CH, Espinoza Trejo DR (2016) Current-sensor fault detection and isolation for induction-motor drives using a geometric approach. Control Eng Pract 53:35–46. https://doi.org/10.1016/j.conengprac.2016.04.014

    Article  Google Scholar 

  19. Venghi LE, Aguilera F, de la Barrera PM, Angelo CHD (2021) Single-observer based current sensor fault tolerant control for IM traction drives. IEEE LATAMT 19:2087–2096

    Google Scholar 

  20. Azzoug Y, Sahraoui M, Pusca R, Ameid T, Romary R, Marques Cardoso AJ (2021) Current sensors fault detection and tolerant control strategy for three-phase induction motor drives. Electr Eng 103(2):881–898. https://doi.org/10.1007/s00202-020-01120-5

    Article  Google Scholar 

  21. Gholipour A, Ghanbari M, Alibeiki E, Jannati M (2021) Speed sensorless fault-tolerant control of induction motor drives against current sensor fault. Electr Eng. https://doi.org/10.1007/s00202-020-01179-0

    Article  Google Scholar 

  22. Venghi LE, Aguilera F, Gonzalez GN, de la Barrera PM, De Angelo CH (2020) Effects of open-switch faults over speed sensor fault-tolerant scheme for electric traction drive. In: IEEE international conference on industrial technology (ICIT), pp 731–736 . https://doi.org/10.1109/ICIT45562.2020.9067326

  23. Bouakoura M, Nait-Said N, Nait-Said MS, Belbach A (2018) Novel speed and current sensor FDI schemes with an improved AFTC for induction motor drives. Adv Electr Electron Eng 16(1):1–14. https://doi.org/10.15598/aeee.v16i1.2573

    Article  Google Scholar 

  24. Hannan MA, Ali JA, Mohamed A, Hussain A (2018) Optimization techniques to enhance the performance of induction motor drives: a review. Renew Sustain Energy Rev 81:1611–1626. https://doi.org/10.1016/j.rser.2017.05.240

    Article  Google Scholar 

  25. Zhang A, Foo G, Vilathgamuwa M, Tseng K, Bhangu B, Gajanayake C (2013) Sensor fault detection, isolation and system reconfiguration based on extended Kalman filter for induction motor drives. IET Electr Power Appl 7(7):607–617. https://doi.org/10.1049/iet-epa.2012.0308

    Article  Google Scholar 

  26. Kuchar M, Palacky P, Simonik P, Strossa J (2021) Self-tuning observer for sensor fault-tolerant control of induction motor drive. Energies 14(9):2564. https://doi.org/10.3390/en14092564

    Article  Google Scholar 

  27. Chakraborty C, Verma V (2015) Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation. IEEE Trans Ind Electron 62(3):1943–1954. https://doi.org/10.1109/TIE.2014.2345337

    Article  Google Scholar 

  28. Salmasi FR (2017) A self-healing induction motor drive with model free sensor tampering and sensor fault detection, isolation, and compensation. IEEE Trans Ind Electron 64(8):6105–6115. https://doi.org/10.1109/TIE.2017.2682035

    Article  Google Scholar 

  29. Tran CD, Palacky P, Kuchar M, Brandstetter P, Dinh BH (2021) Current and speed sensor fault diagnosis method applied to induction motor drive. IEEE Access 9:38660–38672. https://doi.org/10.1109/ACCESS.2021.3064016

    Article  Google Scholar 

  30. Najafabadi TA, Salmasi FR, Jabehdar-Maralani P (2011) Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives. IEEE Trans Ind Electron 58(5):1662–1672. https://doi.org/10.1109/TIE.2010.2055775

  31. Chen H, Jiang B, Lu N (2018) A multi-mode incipient sensor fault detection and diagnosis method for electrical traction systems. Int J Control Autom Syst 16(4):1783–1793. https://doi.org/10.1007/s12555-017-0533-0

    Article  Google Scholar 

  32. Garramiola F, Poza J, Madina P, del Olmo J, Ugalde G (2020) A hybrid sensor fault diagnosis for maintenance in railway traction drives. Sensors 20(4):962. https://doi.org/10.3390/s20040962

    Article  Google Scholar 

  33. Tabbache B, Rizoug N, Benbouzid M, Kheloui A (2013) A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans Veh Technol 62(3):965–971. https://doi.org/10.1109/TVT.2012.2232325

    Article  Google Scholar 

  34. Verghese G, Sanders S (1988) Observers for flux estimation in induction machines. IEEE Trans Ind Electron 35(1):85–94. https://doi.org/10.1109/41.3067

    Article  Google Scholar 

  35. Xepapas S, Kaletsanos A, Xepapas F, Manias S (2003) Sliding-mode observer for speed-sensorless induction motor drives. IEE Proc Control Theory Appl 150(6):611–617. https://doi.org/10.1049/ip-cta:20030882

    Article  Google Scholar 

  36. Salmasi F, Najafabadi T (2011) An adaptive observer with online rotor and stator resistance estimation for induction motors with one phase current sensor. IEEE Trans Energy Convers 26(3):959–966. https://doi.org/10.1109/TEC.2011.2159007

    Article  Google Scholar 

  37. Raisemche A, Boukhnifer M, Larouci C, Diallo D (2014) Two active fault-tolerant control schemes of induction-motor drive in EV or HEV. IEEE Trans Veh Technol 63(1):19–29. https://doi.org/10.1109/TVT.2013.2272182

    Article  Google Scholar 

  38. Lekshmi S, Lal Priya PS (2019) Mathematical modeling of electric vehicles: a survey. Control Eng Pract. https://doi.org/10.1016/j.conengprac.2019.104138

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET, FONCYT, MinCyT Córdoba and Universidad Nacional de Río Cuarto (UNRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Aguilera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

EV model

EV model

The simulated EV model is based on an vehicle prototype available at the Applied Electronics Group from the National University of Río Cuarto [4]. For the model description, the chassis is considered as a rigid body and the effect of the suspension is neglected. The EV longitudinal dynamics are expressed as follows [38]:

$$\begin{aligned} {\dot{v}}_x&= \frac{1}{m}\left( 2F_{xr} + 2F_{xf} - F_\mathrm{{aero}} - F_\mathrm{{rod}} - mg \sin \left( \theta \right) \right) \end{aligned}$$
(25)
$$\begin{aligned} {\dot{\omega }}_r&= \frac{1}{J_r}\left( T_r -r F_{xr} - \sigma _\omega \omega _r \right) \end{aligned}$$
(26)
$$\begin{aligned} {\dot{\omega }}_f&= \frac{1}{J_f}\left( -r F_{xf} - \sigma _\omega \omega _f \right) \end{aligned}$$
(27)

where subscripts r and f mean front and rear, respectively; \(v_x\) is the longitudinal vehicle speed; \(\omega \) is the wheel angular speed; \(F_{x}\) is the traction force; \(F_{\mathrm{{aero}}}\) and \(F_\mathrm{{rod}}\) are the aerodynamic force and the rolling resistance force, respectively; J is the wheel inertia; \(\sigma _\omega \) is the viscous friction coefficient of the wheel axis; \(\theta \) is the slope of the road with respect to the normal; m is the vehicle mass; r is the wheel radius and g is the gravitational acceleration. In addition, \(T_r=N_T T_e\) is the torque applied to the driven wheels, where \(T_e\) is the IM electrical torque and \(N_T\) is the transmission ratio.

Traction forces are determined by:

$$\begin{aligned} \begin{array}{cc} F_{xi} = F_{Ni} \mu _i \end{array} \end{aligned}$$
(28)

where \( i \in \left\{ r, f \right\} \) and \(\mu _i\) is the longitudinal friction coefficient of the contact between the tires and the road. This friction coefficient is obtained as follows:

$$\begin{aligned} \mu _i = \text {sign}\left( \sigma _i\right) \left[ A\left( 1 - e^{-B\left| \sigma _i\right| } \right) + C\sigma _i^2 - D \left| \sigma _i\right| \right] \end{aligned}$$
(29)

where A, B, C and D are parameters which depend on the conditions of the patch contact between the wheel and the road. The function \(\sigma _i\) denotes the wheels slip, defined by:

$$\begin{aligned} \sigma _i = \frac{\omega _i r - v_x}{\text {max}(\left| \omega _i r\right| , \left| v_x\right| )}. \end{aligned}$$
(30)

Moreover, aerodynamic and rolling resistance forces are obtained, respectively, as follows:

$$\begin{aligned} F_{\mathrm{{aero}}}&= C_a \rho _a A_f (v_x - v_a)^2 \end{aligned}$$
(31)
$$\begin{aligned} F_\mathrm{{rod}}&= mg C_r v_x \end{aligned}$$
(32)

where \(C_a\), \(\rho _a\), \(A_f\) and \(v_a\) are the aerodynamic resistance coefficient, the air density, the frontal area of the vehicle and the wind speed, respectively, while \(C_r\) is the rolling resistance coefficient.

EV parameters used for simulations are listed in Table 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera, F., de la Barrera, P.M. & De Angelo, C.H. Speed and current sensor fault-tolerant induction motor drive for electric vehicles based on virtual sensors. Electr Eng 104, 3157–3171 (2022). https://doi.org/10.1007/s00202-022-01541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01541-4

Keywords

Navigation