Skip to main content
Log in

Current sensors fault detection and tolerant control strategy for three-phase induction motor drives

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In the case of failure of one or more components of a drive system, the emergency shutdown of the system is not always the best way to act. Therefore, simultaneous reconfiguration of the drive control strategy is mandatory to enable an uninterrupted operation to cater for the catastrophic failure. In this context, this paper presents a current sensors fault-tolerant control method for induction motor drives, based on vector control and currents estimation. Several important issues are considered in the proposed method, namely, the detection of sensors failure, isolation of the faulty sensors, and reconfiguration of the control system by proper currents estimation. A new adaptation of the Luenberger observer is proposed and used to perform the task of stator currents estimation. Furthermore, a developed logic circuit is used to detect the faulty current sensors and isolate them with simultaneous generation of logic impulses allowing switching to a proper estimation. The proposed fault-tolerant control strategy is firstly tested in MATLAB/Simulink environment in order to illustrate its high-performance. Then, several experimental tests are carried out on a 1.1 kW three-phase induction motor to validate the theoretical results and to confirm the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

V dc :

DC-link voltage

V s :

Three phases stator voltages

\( I_{a} \), \( I_{b} \), \( I_{c} \) :

\( \left( {a,b,c} \right) \) Axis stator currents

\( V_{sd} \), \( V_{sq} \) :

\( \left( {d,q} \right) \) Axis stator voltages

\( I_{sd} \), \( I_{sq} \) :

\( \left( {d,q} \right) \) Axis stator currents

\( \varphi_{rd} \), \( \varphi_{rq} \) :

\( \left( {d,q} \right) \) Axis rotor fluxes

\( \tau_{s} , \tau_{r} \) :

Stator and rotor time constants

\( V_{s\alpha } \), \( V_{s\beta } \) :

\( \left( {\alpha ,\beta } \right) \) Axis stator voltages

\( I_{s\alpha } \), \( I_{s\beta } \) :

\( \left( {\alpha ,\beta } \right) \) Axis stator currents

\( \widehat{{I_{s\alpha } }}, \widehat{{I_{s\beta } }} \) :

\( \left( {\alpha ,\beta } \right) \) Axis estimated stator currents

\( \varphi_{r\alpha } \), \( \varphi_{r\beta } \) :

\( \left( {\alpha ,\beta } \right) \) Axis rotor fluxes

\( \widehat{{\varphi_{r\alpha } }}, \widehat{{\varphi_{r\beta } }} \) :

\( \left( {\alpha ,\beta } \right) \) Axis estimated rotor fluxes

\( \varphi_{r} \) :

Rotor flux magnitude

\( \omega_{s} \) :

Synchronous speed

\( \omega_{r} \) :

Rotor angular speed

\( \omega_{e} \) :

Electrical angular speed

\( \varOmega_{r} \) :

Mechanical speed

\( T_{\text{e}} \), \( T_{\text{l}} \) :

Electromagnetic and load torques

References

  1. Blaschke F (1972) The principle of field orientation as applied to the new transvector closed-loop system for rotating-field machines. Siemens Rev 34:217–220

    Google Scholar 

  2. Mendes AMS, Marques Cardoso AJ (2006) Fault-tolerant operating strategies applied to three-phase induction-motor drives. IEEE Trans Ind Electron 53:1807–1817. https://doi.org/10.1109/TIE.2006.885137

    Article  Google Scholar 

  3. Bin L, Sharma SK (2009) A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans Ind Appl 45:1770–1777. https://doi.org/10.1109/TIA.2009.2027535

    Article  Google Scholar 

  4. Errabelli RR, Mutschler P (2012) Fault-tolerant voltage source inverter for permanent magnet drives. IEEE Trans Power Electron 27:500–508. https://doi.org/10.1109/TPEL.2011.2135866

    Article  Google Scholar 

  5. Tabbache B, Benbouzid M, Kheloui A, Bourgeot J-M, Mamoune A (2013) An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs. ISA Trans 52:862–869. https://doi.org/10.1016/j.isatra.2013.07.004

    Article  Google Scholar 

  6. Berriri H, Naouar MW, Slama-Belkhodja I (2012) Easy and fast sensor fault detection and isolation algorithm for electrical drives. IEEE Trans Power Electron 27:490–499. https://doi.org/10.1109/TPEL.2011.2140333

    Article  Google Scholar 

  7. Yu Y, Chen X, Dong Z (2017) Current sensorless direct predictive control for induction motor drives. In: 2017 IEEE transportation electrification conference and expo, Asia-Pacific (ITEC Asia-Pacific). IEEE, pp 1–6. https://doi.org/10.1109/ITEC-AP.2017.8080975

  8. Campos-Delgado DU, Espinoza-Trejo DR, Palacios E (2008) Fault-tolerant control in variable speed drives: a survey. IET Electr Power Appl 2:121–134. https://doi.org/10.1049/iet-epa:20070203

    Article  Google Scholar 

  9. Balaban E, Saxena A, Bansal P, Goebel KF, Curran S (2009) Modeling, detection, and disambiguation of sensor faults for aerospace applications. IEEE Sens J 9:1907–1917. https://doi.org/10.1109/JSEN.2009.2030284

    Article  Google Scholar 

  10. Karimi S, Gaillard A, Poure P, Saadate S (2009) Current sensor fault-tolerant control for WECS with DFIG. IEEE Trans Ind Electron 56:4660–4670. https://doi.org/10.1109/TIE.2009.2031193

    Article  Google Scholar 

  11. Karimi S, Gaillard A, Poure P, Saadate S (2008) FPGA-based real-time power converter failure diagnosis for wind energy conversion systems. IEEE Trans Ind Electron 55:4299–4308. https://doi.org/10.1109/TIE.2008.2005244

    Article  Google Scholar 

  12. Cronin MJJ (1990) The all-electric aircraft. IEE Rev 36:309. https://doi.org/10.1049/ir:19900132

    Article  Google Scholar 

  13. de Lillo L, Empringham L, Wheeler PW, Khwan-On S, Gerada C, Othman MN et al (2010) Multiphase power converter drive for fault-tolerant machine development in aerospace applications. IEEE Trans Ind Electron 57:575–583. https://doi.org/10.1109/TIE.2009.2036026

    Article  Google Scholar 

  14. Diallo D, Benbouzid MEH, Makouf A (2004) A Fault-tolerant control architecture for induction motor drives in automotive applications. IEEE Trans Veh Technol 53:1847–1855. https://doi.org/10.1109/TVT.2004.833610

    Article  Google Scholar 

  15. Benbouzid MEH, Diallo D, Zeraoulia M (2007) Advanced fault-tolerant control of induction-motor drives for EV/HEV traction applications: from conventional to modern and intelligent control techniques. IEEE Trans Veh Technol 56:519–528. https://doi.org/10.1109/TVT.2006.889579

    Article  Google Scholar 

  16. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2003) Diagnosis and fault-tolerant control, 1st edn. Springer, Berlin. https://doi.org/10.1007/978-3-662-05344-7

    Book  MATH  Google Scholar 

  17. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2006) Diagnosis and fault-tolerant control, 2nd edn. Springer, Berlin. https://doi.org/10.1007/978-3-540-35653-0

    Book  MATH  Google Scholar 

  18. Alwi H, Edwards C, Pin Tan C (2011) Fault detection and fault-tolerant control using sliding modes. Springer, London. https://doi.org/10.1007/978-0-85729-650-4

    Book  MATH  Google Scholar 

  19. Hamayun MT, Edwards C, Alwi H (2016) Fault tolerant control schemes using integral sliding modes, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-32238-4

    Book  MATH  Google Scholar 

  20. Guezmil A, Berriri H, Pusca R, Sakly A, Romary R, Mimouni MF (2019) Experimental investigation of passive fault tolerant control for induction machine using sliding mode approach. Asian J Control 21:520–532. https://doi.org/10.1002/asjc.1753

    Article  MathSciNet  MATH  Google Scholar 

  21. Guezmil A, Berriri H, Pusca R, Sakly A, Romary R, Mimouni MF (2019) High order sliding mode observer-based backstepping fault-tolerant control for induction motor. Asian J Control 21:33–42. https://doi.org/10.1002/asjc.2016

    Article  MathSciNet  MATH  Google Scholar 

  22. Bianchi N, Bolognani S, Zigliotto M, Zordan M (2003) Innovative remedial strategies for inverter faults in IPM synchronous motor drives. IEEE Trans Energy Convers 18:306–314. https://doi.org/10.1109/TEC.2002.808334

    Article  Google Scholar 

  23. Jasim O, Sumner M, Gerada C, Arellano-Padilla J (2011) Development of a new fault-tolerant induction motor control strategy using an enhanced equivalent circuit model. IET Electr Power Appl 5:618. https://doi.org/10.1049/iet-epa.2010.0235

    Article  Google Scholar 

  24. Foster M, Hoang KD, Zhu Z-Q (2013) Direct torque control of permanent magnet brushless AC drive with single-phase open-circuit fault accounting for influence of inverter voltage drop. IET Electr Power Appl 7:369–380. https://doi.org/10.1049/iet-epa.2012.0290

    Article  Google Scholar 

  25. Gajanayake C, Bhangu BS, Foo G, Zhang X, Tseng KJ, Don Vilathgamuwa M (2013) Sensor fault detection, isolation and system reconfiguration based on extended Kalman filter for induction motor drives. IET Electr Power Appl 7:607–617. https://doi.org/10.1049/iet-epa.2012.0308

    Article  Google Scholar 

  26. Yu Y, Wang Z, Xu D, Zhou T, Xu R (2014) Speed and current sensor fault detection and isolation based on adaptive observers for IM drives. J Power Electron 14:967–979. https://doi.org/10.6113/JPE.2014.14.5.967

    Article  Google Scholar 

  27. Yu Y, Zhao Y, Wang B, Huang X, Xu D (2018) Current sensor fault diagnosis and tolerant control for VSI-based induction motor drives. IEEE Trans Power Electron 33:4238–4248. https://doi.org/10.1109/TPEL.2017.2713482

    Article  Google Scholar 

  28. Grouz F, Sbita L, Boussak M (2013) Current sensors faults detection, isolation and control reconfiguration for PMSM drives. In: 2013 international conference on electrical engineering and software applications. IEEE, pp 1–6. https://doi.org/10.1109/ICEESA.2013.6578414

  29. Sepe RB, Fahimi B, Morrison C, Miller JM (2001) Fault tolerant operation of induction motor drives with automatic controller reconfiguration. In: IEMDC 2001. IEEE international electrical machines drives conference (Cat. No .01EX485. IEEE), pp 156–162. https://doi.org/10.1109/iemdc.2001.939291

  30. Stettenbenz M, Liu Y, Bazzi A (2015) Smooth switching controllers for reliable induction motor drive operation after sensor failures. In: 2015 IEEE applied power electronics conference and exposition. IEEE, pp 2407–2411. https://doi.org/10.1109/APEC.2015.7104685

  31. Liu Y, Stettenbenz M, Bazzi AM (2018) Smooth fault-tolerant control of induction motor drives with sensor failures. IEEE Trans Power Electron. https://doi.org/10.1109/TPEL.2018.2848964

    Article  Google Scholar 

  32. Aguilera F, de la Barrera PM, De Angelo CH (2015) A fault tolerant system for current sensors in induction motor drives. In: 2015 XVI workshop on information processing and control. IEEE, pp 1–7. https://doi.org/10.1109/RPIC.2015.7497178

  33. Tabbache B, Benbouzid M, Kheloui A, Bourgeot J-M (2012) DSP-based sensor fault detection and post fault-tolerant control of an induction motor-based electric vehicle. Int J Veh Technol 2012:1–7. https://doi.org/10.1155/2012/608381

    Article  Google Scholar 

  34. Tabbache B, Rizoug N, Benbouzid MEH, Kheloui A (2013) A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans Veh Technol 62:965–971. https://doi.org/10.1109/TVT.2012.2232325

    Article  Google Scholar 

  35. Dybkowski M, Klimkowski K (2016) Stator current sensor fault detection and isolation for vector controlled induction motor drive. In: 2016 IEEE international power electronics motion control conference. IEEE, pp. 1097–1102. https://doi.org/10.1109/EPEPEMC.2016.7752147

  36. Klimkowski K, Dybkowski M (2016) Neural network approach for stator current sensor fault detection and isolation for vector controlled induction motor drive. In: 2016 IEEE international power electronics motion control conference. IEEE, pp 1072–1078. https://doi.org/10.1109/EPEPEMC.2016.7752143

  37. Manohar M, Das S (2017) Current sensor fault-tolerant control for direct torque control of induction motor drive using flux-linkage observer. IEEE Trans Ind Inf 13:2824–2833. https://doi.org/10.1109/TII.2017.2714675

    Article  Google Scholar 

  38. Manohar M, Das S (2020) Current sensor fault-tolerant control of induction motor driven electric vehicle using flux-linkage observer. In: 2020 IEEE transportation electrification conference and expo, pp 884–889. IEEE. https://doi.org/10.1109/ITEC48692.2020.9161553

  39. Kang Y-C, Ok SH, Kang SH (2004) A CT saturation detection algorithm. IEEE Trans Power Deliv 19:78–85. https://doi.org/10.1109/TPWRD.2003.820200

    Article  Google Scholar 

  40. Manohar M, Das S, Kumar R (2017) A robust current sensor fault detection scheme for sensorless induction motor drive. In: 2017 IEEE PES Asia-Pacific power energy engineering conference. IEEE, pp 1–6. https://doi.org/10.1109/APPEEC.2017.8308967

  41. Bala M, Bahri I, Mercier A, Khanchoul M, Krebs G (2019) A speed PMSM control technique with a single DC bus current sensor. In: IECON 2019—45th annual conference IEEE industrial electronics society, vol 1. IEEE, pp 243–248. https://doi.org/10.1109/iecon.2019.8927460

  42. Bala M, Bahri I, Mercier A, Khanchoul M, Krebs G (2020) Speed PMSM control technique using a single current sensor with random SVPWM. In: 2020 IEEE 29th international symposium on industrial electronics. IEEE, pp 1547–1552 https://doi.org/10.1109/isie45063.2020.9152452

  43. Li S, Bai B, Chen D (2019) Vector control of permanent magnet synchronous motor by using single current sensor. In: ICPE 2019—ECCE Asia—10th international conference power electronics—ECCE Asia, pp 2556–2561

  44. Metidji B, Taib N, Baghli L, Rekioua T, Bacha S (2012) Low-cost direct torque control algorithm for induction motor without AC phase current sensors. IEEE Trans Power Electron 27:4132–4139. https://doi.org/10.1109/TPEL.2012.2190101

    Article  Google Scholar 

  45. Noordeen S, Karthikeyan K, Parveen MAN (2013) Direct torque control for induction motor without current sensors. Int J Eng Res Technol 2:388–397

    Google Scholar 

  46. Aminoroaya I, Vaez-Zadeh S (2016) Permanent magnet synchronous motor control using DC-Link current regulation. In: IECON 2016—42nd annual conference of the IEEE Industrial Electronics Society. IEEE, pp 7077–7082. https://doi.org/10.1109/iecon.2016.7793899

  47. Wang W, Yan H, Xu Y, Zou J, Zhang X, Zhao W et al (2020) New three-phase current reconstruction for PMSM drive with hybrid space vector pulse width modulation technique. IEEE Trans Power Electron 8993:1. https://doi.org/10.1109/TPEL.2020.2997986

    Article  Google Scholar 

  48. Zhang Y, Zhao Z, Lu T, Yuan L, Xu W, Zhu J (2009) A comparative study of Luenberger observer, sliding mode observer and extended Kalman filter for sensorless vector control of induction motor drives. In: 2009 IEEE energy conversion congress and exposition. IEEE, pp 2466–2473. https://doi.org/10.1109/ECCE.2009.5316508

  49. Luenberger D (1971) An introduction to observers. IEEE Trans Autom Control 16:596–602. https://doi.org/10.1109/TAC.1971.1099826

    Article  Google Scholar 

  50. Kautsky J, Nichols NK, Van Dooren P (1985) Robust pole assignment in linear state feedback. Int J Control 41:1129–1155. https://doi.org/10.1080/0020718508961188

    Article  MathSciNet  MATH  Google Scholar 

  51. Sepe RB, Fahimi B, Morrison C, Miller JM (2003) Fault tolerant operation of induction motor drives with automatic controller reconfiguration. In: IEMDC 2001. IEEE international electrical machines drives conference (Cat. No. 01EX485), vol 3. IEEE, pp 156–62. https://doi.org/10.1109/IEMDC.2001.939291

Download references

Acknowledgements

This work has been achieved within the framework of CE2I project (Convertisseur d’Energie Intégré Intelligent). CE2I is co-financed by European Union with the financial support of the European Regional Development Fund (ERDF), French State and the French Region of Hauts-de-France. As well, this work was supported by the European Regional Development Fund (ERDF) through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Project POCI-01-0145-FEDER-029494, by National Funds through the FCT—Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/29494/2017, UIDB/04131/2020, and UIDP/04131/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Azzoug.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Tables 2 and 3.

Table 2 Specifications and parameters of the induction motor used in simulation and experimental tests
Table 3 PI regulator values used in simulation and experimental tests

Appendix B

MAX

\( \left| {\Delta I} \right| \) at TR

\( \left| {\Delta I} \right| \) at CR

\( \left| {\Delta I} \right| \)

 

Threshold determination

\( T_{\text{L}} = 0\,{\text{N}}\;{\text{m}} \); \( \omega_{r} = 105 \,{\text{rad/s}} \)

 \( \left| {\Delta I_{a} } \right| \)

0.315

0.265

\( \left| {\Delta I_{a} } \right| < 0.35 \)

\( {\text{Th}} = 0.45 \)

 \( \left| {\Delta I_{b} } \right| \)

0.319

0.271

\( \left| {\Delta I_{b} } \right| < 0.35 \)

 

 \( \left| {\Delta I_{c} } \right| \)

0.323

0.269

\( \left| {\Delta I_{c} } \right| < 0.35 \)

 

\( T_{\text{L}} = 2\,{\text{N}}\,{\text{m}} \); \( \omega_{r} = 105 \,{\text{rad/s}} \)

 \( \left| {\Delta I_{a} } \right| \)

0.306

0.249

\( \left| {\Delta I_{a} } \right| < 0.35 \)

\( {\text{Th}} = 0.45 \)

 \( \left| {\Delta I_{b} } \right| \)

0.348

0.257

\( \left| {\Delta I_{b} } \right| < 0.35 \)

 

 \( \left| {\Delta I_{c} } \right| \)

0.361

0.284

\( \left| {\Delta I_{c} } \right| < 0.40 \)

 

MAX

\( \left| {\Delta I} \right| \) en TR

\( \left| {\Delta I} \right| \) at CR

\( \left| {\Delta I} \right| \)

 

\( T_{\text{L}} = 5 \,{\text{N}}\;{\text{m}} \); \( \omega_{r} = 105 \,{\text{rad/s}} \)

 \( \left| {\Delta I_{a} } \right| \)

0.326

0.214

\( \left| {\Delta I_{a} } \right| < 0.35 \)

\( {\text{Th}} = 0.45 \)

\( \left| {\Delta I_{b} } \right| \)

0.312

0.234

\( \left| {\Delta I_{b} } \right| < 0.35 \)

 

 \( \left| {\Delta I_{c} } \right| \)

0.334

0.229

\( \left| {\Delta I_{c} } \right| < 0.35 \)

 

\( T_{\text{L}} = 0\, {\text{N}}\,{\text{m}} \); \( \omega_{r} = 21 \,{\text{rad/s}} \)

 \( \left| {\Delta I_{a} } \right| \)

0.348

0.265

\( \left| {\Delta I_{a} } \right| < 0.35 \)

\( {\text{Th}} = 0.45 \)

 \( \left| {\Delta I_{b} } \right| \)

0.315

0.2612

\( \left| {\Delta I_{b} } \right| < 0.35 \)

 

 \( \left| {\Delta I_{c} } \right| \)

0.387

0.239

\( \left| {\Delta I_{c} } \right| < 0.35 \)

 

\( T_{\text{L}} = 2\, {\text{N}}\;{\text{m}} \); \( \omega_{r} = 21 \,{\text{rad/s}} \)

 \( \left| {\Delta I_{a} } \right| \)

0.379

0.281

\( \left| {\Delta I_{a} } \right| < 0.40 \)

\( {\text{Th}} = 0.45 \)

 \( \left| {\Delta I_{b} } \right| \)

0.366

0.272

\( \left| {\Delta I_{b} } \right| < 0.40 \)

 

 \( \left| {\Delta I_{c} } \right| \)

0.328

0.233

\( \left| {\Delta I_{c} } \right| < 0.35 \)

 

\( T_{\text{L}} = 5 \,{\text{N}}\;{\text{m}} \);  \( \omega_{r} = 21 \,{\text{rad/s}} \)

 \( \left| {\Delta I_{a} } \right| \)

0.364

0.251

\( \left| {\Delta I_{a} } \right| < 0.40 \)

\( {\text{Th}} = 0.45 \)

 \( \left| {\Delta I_{b} } \right| \)

0.337

0.278

\( \left| {\Delta I_{b} } \right| < 0.35 \)

 

 \( \left| {\Delta I_{c} } \right| \)

0.346

0.250

\( \left| {\Delta I_{c} } \right| < 0.35 \)

 
  1. TR transient regime, CR continuous regime

Appendix C

Comparison between the suggested method and relevant methods over the last 10 years

 

[26]

[28]

[27]

[51]

[30, 31]

[37, 38, 40]

Suggested method

Failure succession in the different sensors

Unsuitable to detect

Unsuitable to detect

Suitable to detect

Suitable to detect

Suitable to detect

Suitable to detect

Suitable to detect

Number of current estimators

3

3

3

0

0

1

1

Number of used current sensors

2

1

1

0

0

0

0

Number of controllers

1

1

1

4

3

1

1

Considered sensor faults

Complete outage

Complete outage and gain fault

Complete outage and gain fault

Complete outage and gain fault

Complete outage and gain fault

Complete outage and gain fault

Complete outage, gain fault, and offset

Sensitive to parametric variation

Sensitive

Sensitive

Sensitive

Sensitive

Sensitive

Sensitive

Insensitive except in high temperature operation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzoug, Y., Sahraoui, M., Pusca, R. et al. Current sensors fault detection and tolerant control strategy for three-phase induction motor drives. Electr Eng 103, 881–898 (2021). https://doi.org/10.1007/s00202-020-01120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01120-5

Keywords

Navigation