Skip to main content
Log in

Adaptive sliding mode control based on a combined state/disturbance observer for the disturbance rejection control of PMSM

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

An improved adaptive sliding mode controller (ASMC) based on a combined state/disturbance observer (CSO) is proposed for the high-performance control of permanent magnet synchronous motor (PMSM). In order to estimate the unknown state and the disturbance including the parameter uncertainty and the external disturbance, the CSO is proposed. Different from the extended state observer (ESO) or generalized ESO (GESO), the CSO uses the linear combination of the extended high-order states to construct the new estimation. The CSO resolves the contradiction between the estimation accuracy and the noise insensitivity, so it is more applicable to time-varying disturbances. Then, the CSO and the ASMC are integrated in the PMSM speed controller by the feed-forward compensation to enhance the system robustness. A simple nonlinear adaptive law is presented to solve the unknown upper bound of the estimation error and minimize the chattering. The theoretical analysis shows that the global stability of the closed-loop system is strictly guaranteed. The simulation and experimental results are presented to demonstrate the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Bolognani S, Zordan M, Zigliotto M (2000) Experimental fault-tolerant control of a PMSM drive. IEEE Trans Ind Electron 47(5):1134–1141

    Article  Google Scholar 

  2. Kim S (2019) Moment of inertia and friction torque coefficient identification in a servo drive system. IEEE Trans Ind Electron 66(1):60–70

    Article  Google Scholar 

  3. Choi HH, Kim EK, Yu DY (2017) Precise PI speed control of permanent magnet synchronous motor with a simple learning feedforward compensation. Electr Eng 99(1):133–139

    Article  Google Scholar 

  4. Du B, Wu S, Han S, Cui S (2016) Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motor. IEEE Trans Ind Electron 63(5):3019–3027

    Article  Google Scholar 

  5. Li S, Liu Z (2009) Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Trans Ind Electron 56(8):3050–3059

    Article  Google Scholar 

  6. Errouissi R, Al-Durra A, Muyeen SM (2017) Continuous-time model predictive control of a permanent magnet synchronous motor drive with disturbance decoupling. IET Electr Power Appl 11(5):697–706

    Article  Google Scholar 

  7. Young KD, Utkin VI, Ozguner U (2002) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7(3):328–342

    Article  Google Scholar 

  8. Kommuri SK, Defoort M, Karimi HR (2016) A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Trans Ind Electron 63(12):7671–7681

    Article  Google Scholar 

  9. Sant AV, Rajagopal KR (2009) PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions. IEEE Trans Magn 45(10):4672–4675

    Article  Google Scholar 

  10. Lin CH (2015) Dynamic control of V-belt continuously variable transmission-driven electric scooter using hybrid modified recurrent Legendre neural network control system. Nonlinear Dyn 79(2):787–808

    Article  Google Scholar 

  11. Utkin VI (2002) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  12. Lv L, Li C, Li G (2017) Projective synchronization for uncertain network based on modified sliding mode control technique. Int J Adapt Control Signal Process 31(3):429–440

    Article  MathSciNet  Google Scholar 

  13. Rao DV, Sinha NK (2013) A sliding mode controller for aircraft simulated entry into spin. Aerosp Sci Technol 28(1):154–163

    Article  Google Scholar 

  14. Milosavljevic C, Perunicic-D B, Veselic B, Petronijevic M (2017) High-performance discrete-time chattering-free sliding mode-based speed control of induction motor. Electr Eng 99(2):583–593

    Article  Google Scholar 

  15. Li S, Zhou M, Yu X (2013) Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans Ind Inform 9(4):1879–1891

    Article  Google Scholar 

  16. Repecho V, Biel D, Arias A (2018) Fixed switching period discrete-time sliding mode current control of a PMSM. IEEE Trans Ind Electron 65(3):2039–2048

    Article  Google Scholar 

  17. Boiko I (2013) Chattering in sliding mode control systems with boundary layer approximation of discontinuous control. Int J Syst Sci 44(6):1126–1133

    Article  MathSciNet  Google Scholar 

  18. Martinez MI, Susperregui A, Tapia G (2017) Second-order sliding-mode-based global control scheme for wind turbine-driven DFIGs subject to unbalanced and distorted grid voltage. IET Electr Power Appl 11(6):1013–1022

    Article  Google Scholar 

  19. Pisano A, Davila A, Fridman L (2008) Cascade control of PM-DC drives via second-order sliding mode technique. IEEE Trans Ind Electron 55(11):3846–3854

    Article  Google Scholar 

  20. Djemai M, Busawon K, Benmansour K (2011) High order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter. Int J Syst Sci 42(11):1869–1882

    Article  MathSciNet  Google Scholar 

  21. Li S, Zong K, Liu H (2011) A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Trans Inst Meas Control 33(5):522–541

    Article  Google Scholar 

  22. Wang Q, Ran M, Dong C (2017) On finite-time stabilization of active disturbance rejection control for uncertain nonlinear systems. Asian J Control 20:415–424

    Article  MathSciNet  Google Scholar 

  23. Yao J, Jiao Z, Ma D (2014) Adaptive robust control of DC motors with extended state observer. IEEE Trans Ind Electron 61(7):3630–3637

    Article  Google Scholar 

  24. Wu D, Zhou S, Xie X (2011) Design and control of an electromagnetic fast tool servo with high bandwidth. IET Electr Power Appl 5(2):217–223

    Article  Google Scholar 

  25. Liu J, Vazquez S, Wu L (2017) Extended state observer based sliding mode control for three-phase power converters. IEEE Trans Ind Electron 61(1):22–31

    Article  Google Scholar 

  26. Lu X, Lin H, Han J (2016) Load disturbance observer-based control method for sensorless PMSM drive. IET Electr Power Appl 10(8):735–743

    Article  Google Scholar 

  27. Shao XL, Wang HL (2015) Performance analysis on linear extended state observer and its extension case with higher extended order. Control Decis 30(5):815–822

    Google Scholar 

  28. Godbole AA, Kolhe JP, Talole SE (2013) Performance analysis of generalized extended state observer in tackling sinusoidal disturbances. IEEE Trans Control Syst Technol 21(6):2212–2223

    Article  Google Scholar 

  29. Guan C, Pan SX (2008) Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Eng Pract 16(11):1275–1284

    Article  Google Scholar 

  30. Zou Q, Qian LF, Kong JS (2015) Adaptive enhanced sliding mode control for permanent magnet synchronous motor drives. Int J Adapt Control Signal Process 29(12):1484–1496

    Article  MathSciNet  Google Scholar 

  31. Fei J, Ding H (2012) Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dyn 70(2):1563–1573

    Article  MathSciNet  Google Scholar 

  32. Lian RJ (2014) Adaptive self-organizing fuzzy sliding mode radial basis-function neural-network controller for robotic systems. IEEE Trans Ind Electron 61(3):1493–1503

    Article  Google Scholar 

  33. Plestan F, Shtessel Y, Bregeault V (2013) Sliding mode control with gain adaptation-application to an electropneumatic actuator. Control Eng Pract 21(5):679–688

    Article  Google Scholar 

  34. Shi T, Wang Z, Xia C (2015) Speed measurement error suppression for PMSM control system using self-adaption Kalman observer. IEEE Trans Ind Electron 62(5):2753–2763

    Article  Google Scholar 

  35. Yan Y, Ji B, Shi T (2015) Two-degree-of-freedom proportional integral speed control of electrical drives with Kalman-filter-based speed estimation. IET Electr Power Appl 10(1):18–24

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof

Define the following state variables: \( x_{0} = \int_{0}^{t} {x_{1} (t)} {\text{d}}t \), \( x_{ - 1} = \int_{0}^{t} {x_{0} (t){\text{d}}t} \), …, and \( x_{{1 - r_{1} }} = \int_{0}^{t} {x_{{1 - (r_{1} - 1)}} (t){\text{d}}t} \), the system (6) can be rewritten as

$$ \left\{ {\begin{array}{*{20}l} {\dot{x}_{{1 - r_{1} }} = x_{{1 - (r_{1} - 1)}} } \hfill \\ \vdots \hfill \\ {\dot{x}_{1} = x_{2} } \hfill \\ {\dot{x}_{2} = u + x_{3} } \hfill \\ {\dot{x}_{3} = \dot{D}} \hfill \\ \vdots \hfill \\ {\dot{x}_{{n + 2 - r_{1} }} = D^{{(n - r_{1} )}} } \hfill \\ \end{array} } \right. $$
(A1)

For system (A1), a GESO is designed as

$$ \left\{ {\begin{array}{*{20}l} {\dot{\eta }_{{1 - r_{1} }} = \eta_{{1 - (r_{1} - 1)}} - \omega_{0} k_{1} \xi_{1} } \hfill \\ \vdots \hfill \\ {\dot{\eta }_{1} = \eta_{2} - \omega_{0}^{{r_{1} + 1}} k_{{r_{1} + 1}} \xi_{1} } \hfill \\ {\dot{\eta }_{2} = u + \eta_{3} - \omega_{0}^{{r_{1} + 2}} k_{{r_{1} + 2}} \xi_{1} } \hfill \\ {\dot{\eta }_{3} = \eta_{4} - \omega_{0}^{{r_{1} + 3}} k_{{r_{1} + 3}} \xi_{1} } \hfill \\ \vdots \hfill \\ {\dot{\eta }_{{n + 2 - r_{1} }} = - \omega_{0}^{n + 2} k_{n + 2} \xi_{1} } \hfill \\ \end{array} } \right. $$
(A2)

where \( \xi_{1} = \eta_{{1 - r_{1} }} - x_{{1 - r_{1} }} \), \( k_{i} = \left( {n + 2} \right)!/i! \times (n + 2 - i)! \), and \( - \omega_{0} \) is the desired pole. Supposing \( \xi = [\xi_{1} , \ldots ,\xi_{n + 2} ] = [\eta_{{1 - r_{1} }} - x_{{1 - r_{1} }} ,\eta_{{1 - (r_{1} - 1)}} - x_{{1 - (r_{1} - 1)}} , \ldots ,\eta_{{n + 2 - r_{1} }} - x_{{n + 2 - r_{1} }} ] \), and subtracting (A1) from (A2) we have

$$ \left\{ {\begin{array}{*{20}l} {\dot{\xi }_{1} = \xi_{2} - \omega_{0} k_{1} \xi_{1} } \hfill \\ {\dot{\xi }_{2} = \xi_{3} - \omega_{0}^{2} k_{2} \xi_{1} } \hfill \\ \vdots \hfill \\ {\dot{\xi }_{n + 2} = - \omega_{0}^{n + 2} k_{n + 2} \xi_{1} - D^{{(n - r_{1} )}} } \hfill \\ \end{array} } \right. $$
(A3)

By using Laplace transform of (A2) and (A3), the following equation can be obtained

$$ \begin{aligned} \eta_{2} (s) & = \frac{{l_{{r_{1} + 2}} s^{{n - r_{1} }} + l_{{r_{1} + 3}} s^{{n - r_{1} - 1}} + \cdots + l_{n + 2} }}{{s^{n + 2} + l_{1} s^{n + 1} + l_{2} s^{n} + \cdots + l_{n + 2} }}x_{2} (s) \\ & \quad + \frac{{s^{n + 1} + l_{1} s^{n} + \cdots + l_{{r_{1} + 1}} s^{{n - r_{1} }} }}{{s^{n + 2} + l_{1} s^{n + 1} + l_{2} s^{n} + \cdots + l_{n + 2} }}u(s) \\ \end{aligned} $$
(A4)

Comparing (A4) with (17), it can be seen that \( \hat{x}_{2} (s) = \eta_{2} (s) \), so \( \hat{x}_{2} (t) = \eta_{2} (t) \). Then using the theorem in [27], for GESO (A2), there is \( \lim_{t \to \infty } \left| {\eta_{2} - x_{2} } \right| \le O(\varepsilon^{{n + 1 - r_{1} }} ) \), where ε = 1/ω0. Thus \( \lim_{t \to \infty } \left| {\hat{x}_{2} - x_{2} } \right| \le O(\varepsilon^{{n + 1 - r_{1} }} ) \) is satisfied. Similarly, \( \lim_{t \to \infty } \left| {\hat{D} - D} \right| \le O(\varepsilon^{{n - r_{2} }} ) \) can be proved. Thus, Theorem 1 is proved.

Here, the existing results of GESO are used in the proof of Theorem 1. And it can be seen that the GESO (A2) achieves the same estimation as the CSO. However, (A2) cannot be implemented because the “integral saturation” problem will appear when calculating x0, \( x_{ - 1} \), …, \( x_{{1 - r_{1} }} \). The CSO uses the linear combination of the extended high-order states to generate the unknown state and disturbance estimations, so this problem is eliminated.

Appendix B

Proof

When x = 0, it can be easy known f(0) = 0. When x > 0, if k < kd, defining \( g(x) = f^{'} (x) = - 2k_{s} x - (k - k_{d} ) + \frac{1}{\lambda }(k - k_{d} )k_{m} px^{p - 1} \), then \( g^{'} (x) = - 2k_{s} + \frac{1}{\lambda }(k - k_{d} )k_{m} p(p - 1)x^{p - 2} \) can be obtained. Supposing \( g^{'} (x_{0} ) = 0 \), we have

$$ x_{0} = \left(\frac{{2k_{s} \lambda }}{{(k - k_{d} )k_{m} p(p - 1)}}\right)^{{\frac{1}{p - 2}}} $$
(B1)

It can be known that x0 > 0. Noting \( g^{''} (x_{0} ) = (k - k_{d} )k_{m} {{p(p - 1)(p - 2)x_{0}^{p - 3} } \mathord{\left/ {\vphantom {{p(p - 1)(p - 2)x_{0}^{p - 3} } \lambda }} \right. \kern-0pt} \lambda } \), and considering k < kd, 0 < p < 1 and x0 > 0, there is \( g^{''} (x_{0} ) < 0 \). Thus the maximum value of g(x) is g(x0), i.e., g(x) ≤ g(x0). Selecting \( \lambda = {{(k - k_{d} )k_{m} p(p - 1)} \mathord{\left/ {\vphantom {{(k - k_{d} )k_{m} p(p - 1)} {2k_{s} }}} \right. \kern-0pt} {2k_{s} }} \cdot \left[ { - \frac{1}{{2k_{s} }}(k - k_{d} )} \right]^{p - 2} > 0 \), and substituting it into (B1), we have \( x_{0} = - \frac{1}{{2k_{s} }}(k - k_{d} ) \). Substituting x0 into g(x), it yields

$$ g(x_{0} ) = {{(k - k_{d} )k_{m} px_{0}^{p - 1} } \mathord{\left/ {\vphantom {{(k - k_{d} )k_{m} px_{0}^{p - 1} } \lambda }} \right. \kern-0pt} \lambda } $$
(B2)

Because x0 > 0, there is g(x0) < 0, and thus \( f^{'} (x) = g(x) \le g(x_{0} ) < 0 \) for all x > 0.

If k = kd, there is \( f(x) = - k_{s} x^{2} \), it is obvious that \( f^{'} (x) = - 2k_{s} x < 0 \) for all \( x > 0 \). Therefore, there exists a positive real number λ such that \( f^{'} (x) < 0 \) for all x > 0. And noting that f(0) = 0 and f(x) is continuous, it can be known that \( f(x) \le 0 \) for all \( x \ge 0 \). Lemma 2 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Yang, L. & Ma, X. Adaptive sliding mode control based on a combined state/disturbance observer for the disturbance rejection control of PMSM. Electr Eng 102, 1863–1879 (2020). https://doi.org/10.1007/s00202-020-00999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-00999-4

Keywords

Navigation