Skip to main content

Advertisement

Log in

A state-space model and control of a full-range PMSG wind turbine for real-time simulations

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Direct drive permanent magnet synchronous generators (PMSG) have drawn great interest to wind turbine manufacturers, due to the advance of power electronic technology, improved designs and fabrication procedures of these types of generators. In this research, a state-space model of a PMSG wind turbine was developed, and used for the obtainment of a control strategy in a easier way for a test system in the dq reference frame. Then, a complete model of a PMSG wind turbine connected to an electric grid through a full-scale Back-to-Back converter with its controls was implemented, using the detailed models included in a real-time digital simulator. Simulation results show that the controllers perform efficiently during transient and steady-state conditions, and that the presented model can be used for the development of control strategies prior to their implementation in a professional software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Shi Q, Wang G, Fu L, Yuan L, Huang H (2013) State-space averaging model of wind turbine with PMSG and its virtual inertia control. In: IECON 2013–39th annual conference of the IEEE, Industrial Electronics Society, pp. 1880–1886

  2. Martins M, Perdana A, Ledesma P, Agneholm E, Carlson O (2007) Validation of fixed speed wind turbine dynamic models with measured data. Renew Energy 32(8):1880–1886

    Article  Google Scholar 

  3. Najafi HR, Dastyar F (2013) Dynamic maximum available power of fixed-speed wind turbine at islanding operation. Int J Electr Power Energy Syst 47:147–156

    Article  Google Scholar 

  4. Kim D-C, Choi J-H, Jung W-W, Kim J-Y, Song II-K (2011) Modeling and MPPT control in DFIG-based variable-speed wind energy conversion systems by using RTDS. J Int Counc Electr Eng 1(4):430–436

    Article  Google Scholar 

  5. Muyeen SM, Al-Durra A, Tamura J (2011) Variable speed wind turbine generator system with current controlled voltage source inverter. Energy Convers Manage 52(7):2688–2694

    Article  Google Scholar 

  6. Shariatpanah H, Fadaeinedjad R, Rashidinejad M (2013) A new model for PMSG-based wind turbine with yaw control. IEEE Trans Energy Convers 28(4):929–937

    Article  Google Scholar 

  7. Hiskens IA (2012) Dynamics of type-3 wind turbine generator models. IEEE Trans Power Syst 27(1):467–474

    Article  Google Scholar 

  8. Chen J, Wu H, Sun M, Jiang W, Cai L, Guo C (2012) Modeling and simulation of directly driven wind turbine with permanent magnet synchronous generator. In: IEEE PES innovative smart grid technologies, pp 1–5

  9. Blaabjerg F, Liserre M, Ma K (2012) Power electronics converters for wind turbine systems. IEEE Trans Ind Appl 48(2):708–719

    Article  Google Scholar 

  10. Singh M, Surya S (2011) Dynamic models for wind turbines and wind power plants. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  11. Ben Ali R, Schulte H, Mami A (2017) Modeling and simulation of a small wind turbine system based on PMSG generator. Evol Adapt Intell Syst EAIS 2017:1–6

    Google Scholar 

  12. Youness EM, Othmane Z (2017) Dynamic modeling and control of a wind turbine with MPPT control connected to the grid by using PMSG. In: 2017 International conference on advanced technologies for signal and image processing (ATSIP), vol 2017, pp 1–6

  13. Kim GH, Kim YJ, Park M, Yu IK, Song BM (2010) RTDS-based real time simulations of grid-connected wind turbine generator systems. In: 2010 Twenty-fifth annual IEEE applied power electronics conference and exposition (APEC), pp 2085–2090

  14. Yin M, Li G, Zhou M, Zhao C (2007) Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In: IEEE power engineering society general meeting, pp 1–6

  15. Dehkordi AB, Gole AM, Maguire TL (Jun 2005) Permanent magnet synchronous machine model for real-time simulation. In: International conference on power systems transients (IPST05)

  16. Soriano LA, Yu W, Rubio JJ (2013) Modeling and control of wind turbine. Math Probl Eng 2013:982597. https://doi.org/10.1155/2013/982597

    Article  Google Scholar 

  17. Liu W, Chen L, Ou J, Cheng S (2011) Simulation of PMSG wind turbine system with sensor-less control technology based on model reference adaptive system. In: 2011 International conference on electrical machines and systems (ICEMS), pp 1–3

  18. Brahmi J, Krichen L, Ouali A (2009) A comparative study between three sensorless control strategies for PMSG in wind energy conversion system. Appl Energy 86(9):1565–1573

    Article  Google Scholar 

  19. Ortega DF, Shireen W, Castelli-Dezza F (2012) Control for grid connected PMSG Wind turbine with DC link capacitance reduction. In: Transmission and distribution conference and exposition (TD), 2012 IEEE PES, pp 1–8

  20. Malinga B (2013) Modeling and control of a wind turbine as a distributed resource. In: 35th Southeastern symposium on system theory, pp 108–112

  21. Utkin VI (1992) Sliding modes in control and optimization. Communications and control engineering series. Springer, Berlin

    Book  Google Scholar 

  22. Beltran B, Ahmed-Ali T, Benbouzid MEH, Haddoun A (2007) Sliding mode power control of variable speed wind energy conversion systems. In: IEEE international electric machines and drives conference (IEMDC ’07), pp 943–948

  23. Yilmaz AS, Zer Z (2009) Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst Appl 36(6):9767–9775

    Article  Google Scholar 

  24. Yao X, Su X, Tian L (2009) Wind turbine control strategy at lower wind velocity based on neural network PID control. In: International workshop on intelligent systems and applications (ISA ’09), pp 1–5

  25. Lee HH, Dzung PQ, Phuong LM, Khoa LD, Nhan NH (2010) A new fuzzy logic approach for control system of wind turbine with doubly fed induction generator. In: International forum on strategic technology (IFOST ’10), pp 134–139

  26. Qudaih YS, Bernard M, Mitani Y, Mohamed TH (2011) Model predictive based load frequency control design in the presence of DFIG wind turbine. In: 2nd International conference on electric power and energy conversion systems (EPECS ’11), pp 1–5

  27. Kang C, Feng X, Yongjie F, Yuehai Y (2010) Comparative simulation of dynamic characteristics of Wind Turbine Doubly-Fed Induction Generator based on RTDS and MATLAB. In: 2010 International conference on power system technology (POWERCON), pp 1–8

  28. Tursini M, Di Leonardo L, Olivieri C, Loggia ED (2013) Rapid control prototyping of IPM drives by real time simulation. In: 2013 8th EUROSIM congress on modelling and simulation, pp 364–371

  29. Yao T, Leonard I, Ayyanar R, Steurer M (2015) Single-phase three-stage SST modeling using RTDS for controller hardware-in-the-loop application. IEEE Energy Convers Congress Expos ECCE 2015:2302–2309

    Google Scholar 

  30. Peña R., Medina A (2012) Real time simulation of a power system including renewable energy sources. In: North American power symposium (NAPS), pp 1–5

  31. Yin M, Li G, Zhou M, Zhao C (2007) Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In: Power engineering society general meeting. IEEE, pp 1–6

  32. Howlett RJ, M’Sirdi NK, Naamane A, Ali SY, Errami MO, Maaroufi M (2013) Control of a PMSG based wind energy generation system for power maximization and grid fault conditions. In: Mediterranean Green Energy Forum 2013, Proceedings of an international conference MGEF-13 Energy Procedia, vol 42, pp 220–229

  33. Ackermann T (2005) Wind power in power systems. Wiley, Hoboken

    Book  Google Scholar 

  34. González-Longatt FM, Amaya O, Cooz M, Duran L, Peraza C, Arteaga FJ, Villanueva C (2007) Modelación y simulación de la velocidad de viento por medio de una formulación estocástica. Revista INGENIERÍA UC 14(3):7–15

    Google Scholar 

  35. Wai R-J, Lin CY, Chang YR (2007) Novel maximum-power-extraction algorithm for PMSG wind generation system. Electr Power Appl IET 1(2):275–283

    Article  Google Scholar 

  36. Wang Q, Chang L (2004) An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans Power Electron 19(5):1242–1249

    Article  Google Scholar 

  37. Heier S (1998) Grid integration of wind energy conversion systems. Wiley, Hoboken

    Google Scholar 

  38. Krause PC, Wasynczuk O, Sudhoff SD, Pekarek S (2013) Analysis of electric machinery and drive systems. IEEE Press series on power engineering. Wiley, New York

    Book  Google Scholar 

  39. Peña R, Medina A, Anaya-Lara O (2011) Steady-state solution of fixed-speed wind turbines following fault conditions through extrapolation to the limit cycle. IETE J Res 57(1):12–19

    Google Scholar 

  40. Alcala J, Cardenas V, Ramirez-Lopez AR, Gudino-Lau J (2011) Study of the bidirectional power flow in Back-to-Back converters by using linear and nonlinear control strategies. In: Energy conversion congress and exposition (ECCE), 2011 IEEE, pp 806–813

  41. Segundo J, Medina A (2009) Modeling of FACTS devices based on SPWM VSCs. IEEE Trans Power Deliv 24(4):1815–1823

    Article  Google Scholar 

  42. Bianchi FD, De Battista H, Mantz RJ (2007) Wind turbine control systems, principles, modelling and gain scheduling design. Advances in industrial control series. Springer, Berlin

    Google Scholar 

  43. Tobías A, Peña R, Morales J, Gutierrez G (2015) Modeling of a wind turbine with a permanent magnet synchronous generator for real time simulations. In: 2015 IEEE international autumn meeting on power, electronics and computing (ROPEC), pp 1–6

  44. Van der Broeck HW, Skudelny H-C, Stanke GV (1988) Analysis and realization of a pulsewidth modulator based on voltage space vectors. IEEE Trans Ind Appl 24(1):142–150

    Article  Google Scholar 

  45. Technologies RTDS (2015) Real time digital simulator tutorial manual. RTDS Technologies, Winnipeg

    Google Scholar 

  46. Dommel HW (1969) Digital computer solution of electromagnetic transients in single- and multiphase networks. IEEE Trans Power Appar Syst 88(4):388–399

    Article  Google Scholar 

  47. Phillips CL, Nagle HT (1984) Digital control system analysis and design. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  48. Ali Mohd H (2012) Wind energy systems, solutions for power quality and stabilization. CRC Press, Boca Raton

    Google Scholar 

  49. Pagola V, Peña R, Segundo J (2015) Low voltage ride-through analysis in real time of a PV-Wind hybrid system. In: 2015 IEEE international autumn meeting on power, electronics and computing (ROPEC), pp 1–6

  50. Abad G, López J, Rodríguez M, Marroyo L, Iwanski G (2011) Doubly fed induction machine: modeling and control for wind energy generation. IEEE Press series on power engineering. Wiley, Hoboken

    Book  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the Universidad Autónoma de San Luis Potosí (UASLP) through the Facultad de Ingeniería, the Facultad de Ingeniería Eléctrica of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), and the Institute for Energy and Environment, University of Strathclyde, for the facilities granted to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Peña-Gallardo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Parameters of the test system

Appendix: Parameters of the test system

The parameters of the test system used in this research are in Tables 1, 2, 3 and 4.

Table 1 Parameters of the wind turbine
Table 2 PMSG parameters
Table 3 BTB converter and grid parameters
Table 4 Transmission line parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobías-González, A., Peña-Gallardo, R., Morales-Saldaña, J. et al. A state-space model and control of a full-range PMSG wind turbine for real-time simulations. Electr Eng 100, 2177–2191 (2018). https://doi.org/10.1007/s00202-018-0691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-018-0691-y

Keywords

Navigation