Skip to main content
Log in

On self-duality and hulls of cyclic codes over \(\frac{\mathbb {F}_{2^m}[u]}{\langle u^k\rangle }\) with oddly even length

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let \(\mathbb {F}_{2^m}\) be a finite field of \(2^m\) elements and denote \(R=\mathbb {F}_{2^m}[u]/\langle u^k\rangle \) \(=\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}+\cdots +u^{k-1}\mathbb {F}_{2^m}\) (\(u^k=0\)), where k is an integer satisfying \(k\ge 2\). For any odd positive integer n, an explicit representation for every self-dual cyclic code over R of length 2n and a mass formula to count the number of these codes are given. In particular, a generator matrix is provided for the self-dual 2-quasi-cyclic code of length 4n over \(\mathbb {F}_{2^m}\) derived by an arbitrary self-dual cyclic code of length 2n over \(\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}\) and a Gray map from \(\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}\) onto \(\mathbb {F}_{2^m}^2\). Finally, the hull of each cyclic code with length 2n over \(\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}\) is determined and all distinct self-orthogonal cyclic codes of length 2n over \(\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}\) are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub, T., Siap, I.: Cyclic codes over the ring \(\mathbb{Z}_2+u\mathbb{Z}_2\) and \(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2\). Des. Codes Cryptogr. 42, 273–287 (2007)

    Article  MathSciNet  Google Scholar 

  2. Al-Ashker, M., Hamoudeh, M.: Cyclic codes over \(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2+\ldots +u^{k-1}\mathbb{Z}_2\). Turk. J. Math. 35(4), 737–749 (2011)

    MATH  Google Scholar 

  3. Alfaro, R., Dhul-Qarnayn, K.: Constructing self-dual codes over \(\mathbb{F}_q[u]/(u^t)\). Des. Codes Cryptogr. 74, 453–465 (2015)

    Article  MathSciNet  Google Scholar 

  4. Betsumiya, K., Ling, S., Nemenzo, F.R.: Type II codes over \(\mathbb{F}_{2^m}+u\mathbb{F}_{2^m}\). Discrete Math. 275(1–3), 43–65 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bonnecaze, A., Rains, E., Solé, P.: 3-colored 5-designs and \(\mathbb{Z}_4\)-codes. J. Stat. Plan. Inference 86(2), 349–368 (2000). Special issue in honor of Professor Ralph Stanton. MR 1768278 (2001g:05021)

    Article  Google Scholar 

  6. Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45, 1250–1255 (1999)

    Article  Google Scholar 

  7. Cao, Y., Cao, Y., Fu, F.-W.: Cyclic codes over \(\mathbb{F}_{2^m}[u]/\langle u^k\rangle \) of oddly even length. Appl. Algebra Eng. Commun. Comput. 27, 259–277 (2016)

    Article  Google Scholar 

  8. Chen, B., Ling, S., Zhang, G.: Enumeration formulas for self-dual cyclic codes. Finite Fields Appl. 42, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dinh, H.Q.: Constacyclic codes of length \(2^s\) over Galois extension rings of \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 55, 1730–1740 (2009)

    Article  Google Scholar 

  10. Dougherty, S.T., Gaborit, P., Harada, M., Solé, P.: Type II codes over \(\mathbb{F} _2+u\mathbb{F} _2\). IEEE. Trans. Inf. Theory 45(1), 32–45 (1999). MR 1677846 (2000h:94053)

    Article  Google Scholar 

  11. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  12. Han, S., Lee, H., Lee, Y.: Construction of self-dual codes over \(\mathbb{F}_2+u\mathbb{F}_2\). Bull. Korean Math. Soc. 49(1), 135–143 (2012)

    Article  MathSciNet  Google Scholar 

  13. Karadeniz, S., Yildiz, B., Aydin, N.: Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over \(\mathbb{F}_2+u\mathbb{F}_2\). Filomat 28(5), 937–945 (2014)

    Article  MathSciNet  Google Scholar 

  14. Kaya, A., Yildiz, B., Siap, I.: New extremal binary self-dual codes from \(\mathbb{F}_4+u\mathbb{F}_4\)-lifts of quadratic double circulant codes over \(\mathbb{F}_4\). Finite Fields Appl. 35, 318–329 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kaya, A., Yildiz, B.: Various constructions for self-dual codes over rings and new binary self-dual codes. Discrete Math. 339(2), 460–469 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ling, S., Solé, P.: Type II codes over \(\mathbb{F}_4+u\mathbb{F}_4\). Eur. J. Comb. 22, 983–997 (2001)

    Article  Google Scholar 

  17. Norton, G., Sălăgean-Mandache, A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000)

    Article  MathSciNet  Google Scholar 

  18. Sangwisut, E., Jitman, S., Ling, S., Udomkavanich, P.: Hulls of cyclic and negacyclic codes over finite fields. Finite Fields Appl. 33, 232–257 (2015)

    Article  MathSciNet  Google Scholar 

  19. Singh, A.K., Kewat, P.K.: On cyclic codes over the ring \(\mathbb{Z}_p[u]/\langle u^k\rangle \). Des. Codes Cryptogr. 74, 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sok, L., Shi, M., Solé, P.: Construction of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 11801324, 11671235, 61971243, 61571243), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BA007) and the Scientific Research Fund of Hubei Provincial Key Laboratory of Applied Mathematics (Hubei University) (Grant Nos. HBAM201906, HBAM201804), the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD09) and the Nankai Zhide Foundation. Part of this work was done when Yonglin Cao was visiting Chern Institute of Mathematics, Nankai University, Tianjin, China. He would like to thank the institution for the kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: All distinct self-dual cyclic codes of length 2n over the ring \(R=\frac{\mathbb {F}_{2^m}[u]}{\langle u^k\rangle }\), where \(3\le k\le 5\) and n is odd

By Lemma 2.3, Corollary 2.5, Theorem 3.1 and Theorem 3.3, we have the follows conclusions.

Case \(k=4\)

Using the notation in Theorem 3.3(ii), the number of self-dual cyclic codes of length 2n over \(\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}+u^2\mathbb {F}_{2^m}+u^3\mathbb {F}_{2^m}\) \((u^4=0)\) is

$$\begin{aligned} (1+2^m+4^m)\cdot \prod _{j=2}^\lambda (1+2^{\frac{d_j}{2}m}+2^{d_jm})\cdot \prod _{j=\lambda +1}^{\lambda +\epsilon }(9+5\cdot 2^{d_jm}+4^{d_jm}). \end{aligned}$$

Precisely, all these codes are given by

$$\begin{aligned} \mathcal{C}=\left( \oplus _{j=1}^\lambda \varepsilon _j(x)C_j\right) \oplus \left( \oplus _{j=\lambda +1}^{\lambda +\epsilon }(\varepsilon _{j}(x)C_{j}\oplus \varepsilon _{j+\epsilon }(x)C_{j+\epsilon })\right) , \end{aligned}$$

where \(C_j\) is an ideal of \(\mathcal{K}_j+u\mathcal{K}_j+u^2\mathcal{K}_j+u^3\mathcal{K}_j\) \((u^4=0)\) listed as follows:

  1. (i)

    \(C_1\) is one of the following \(1+2^m+4^m\) ideals:

    $$\begin{aligned}&{\langle } u^2\rangle , \langle (x-1)\rangle ;\\&{\langle } u^2+u(x-1)\omega \rangle \text { where }\omega \in \mathbb {F}_{2^m}\text { and }\omega \ne 0;\\&{\langle } u^2+(x-1)\omega \rangle \text { where }\omega =a_0+ua_1, a_0,a_1\in \mathbb {F}_{2^m}\text { and }a_0\ne 0;\\&{\langle } u^3+(x-1)\omega \rangle \text { where }\omega \in \mathbb {F}_{2^m}\text { and }\omega \ne 0;\\&{\langle } u^3,u(x-1)\rangle . \end{aligned}$$
  2. (ii)

    Let \(2\le j\le \lambda \). Then \(C_j\) is one of the following \(1+2^{\frac{d_j}{2}m}+2^{d_jm}\) ideals:

    $$\begin{aligned}&\langle u^2\rangle , \langle f_j(x)\rangle ;\\&\langle u^2+uf_j(x)\omega \rangle \hbox { where }\omega \in \varTheta _{j,1};\\&\langle u^2+f_j(x)\omega \rangle \hbox { where }\omega =a_0(x)+ua_1(x), a_0(x)\in \varTheta _{j,1}\hbox { and }a_1(x)\in \{0\}\cup \varTheta _{j,1};\\&\langle u^3+f_j(x)\omega \rangle \hbox { where }\omega \in \varTheta _{j,1};\\&\langle u^3,uf_j(x)\rangle . \end{aligned}$$
  3. (iii)

    Let \(\lambda +1\le j\le \lambda +\epsilon \). Then the pair \((C_j,C_{j+\epsilon })\) of ideals is one of the following \(9+5\cdot 2^{d_jm}+4^{d_jm}\) cases listed in the following table:

\(\mathcal {L}\)

\(C_j\) (mod \(f_j(x)^2\))

\(|C_j|\)

\(C_{j+\epsilon }\) (mod \(f_{j+\epsilon }(x)^2\))

5

\(\bullet \) \(\langle u^i\rangle \)\((0\le i\le 4)\)

\(4^{(4-i)d_jm}\)

\(\diamond \) \(\langle u^{k-i}\rangle \)

4

\(\bullet \) \(\langle u^sf_j(x)\rangle \) (\(0\le s\le 3\))

\(2^{(4-s)d_jm}\)

\(\diamond \) \(\langle u^{4-s},f_{j+\epsilon }(x)\rangle \)

\(3(2^{d_jm}-1)\)

\(\bullet \) \(\langle u^{i}+u^{i-1} f_j(x)\omega \rangle \)

\(4^{(4-i)d_jm}\)

\(\diamond \) \(\langle u^{4-i}+u^{3-i}f_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

 

(\(i=1,2,3\))

  

\(4^{d_jm}-2^{d_jm}\)

\(\bullet \) \(\langle u^{2}+f_j(x)\vartheta \rangle \)

\(4^{2d_jm}\)

\(\diamond \) \(\langle u^{2}+f_{j+\epsilon }(x)\vartheta ^{\prime }\rangle \)

\(2^{d_jm}-1\)

\(\bullet \) \(\langle u^3+f_j(x)\omega \rangle \)

\(2^{4d_jm}\)

\(\diamond \) \(\langle u^3+f_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

\(2^{d_jm}-1\)

\(\bullet \) \(\langle u^3+uf_j(x)\omega \rangle \)

\(2^{3d_jm}\)

\(\diamond \) \(\langle u^2+f_{j+\epsilon }(x)\omega ^{\prime },\)

   

\(uf_{j+\epsilon }(x)\rangle \)

6

\(\bullet \) \(\langle u^i,u^sf_j(x)\rangle \)

\(2^{(8-(i+s))d_jm}\)

\(\diamond \) \(\langle u^{4-s}, u^{4-i}f_{j+\epsilon }(x)\rangle \)

 

(\(0\le s<i\le 3\))

  

\(2^{d_jm}-1\)

\(\bullet \) \(\langle u^2+f_j(x)\omega , uf_j(x)\rangle \)

\(2^{5d_jm}\)

\(\diamond \) \(\langle u^3+uf_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

where \(\mathcal {L}\) is the number of pairs \((C_j,C_{j+\epsilon })\) in the same row, and

$$\begin{aligned} \omega= & {} \omega (x)\in \mathcal {F}_j=\frac{\mathbb {F}_{2^m}[x]}{\langle f_j(x)\rangle }, \omega \ne 0\;\hbox { and}\\ \omega ^{\prime }= & {} \delta _jx^{-d_j}\omega (x^{-1}) \ (\mathrm{mod} \ f_{j+\epsilon }(x)); \end{aligned}$$

\(\vartheta =a_0(x)+ua_1(x)\) with \(a_0(x),a_1(x)\in \mathcal {F}_j\) and \(a_0(x)\ne 0\), and

$$\begin{aligned} \vartheta ^{\prime }=\delta _jx^{-d_j}\left( a_0(x^{-1})+ua_1(x^{-1})\right) \ (\mathrm{mod} \ f_{j+\epsilon }(x)). \end{aligned}$$

Case \(k=3\)

Using the notation in Theorem 3.3(ii), the number of self-dual cyclic codes of length 2n over the ring \(\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}+u^2\mathbb {F}_{2^m}\) \((u^3=0)\) is

$$\begin{aligned} (1+2^m)\cdot \prod _{j=2}^\lambda (1+2^{\frac{d_j}{2}m}) \cdot \prod _{j=\lambda +1}^{\lambda +\epsilon }(7+3\cdot 2^{d_jm}). \end{aligned}$$

Precisely, all these codes are given by

$$\begin{aligned} \mathcal{C}=\left( \oplus _{j=1}^\lambda \varepsilon _j(x)C_j\right) \oplus \left( \oplus _{j=\lambda +1}^{\lambda +\epsilon }(\varepsilon _{j}(x)C_{j}\oplus \varepsilon _{j+\epsilon }(x)C_{j+\epsilon })\right) , \end{aligned}$$

where \(C_j\) is an ideal of \(\mathcal{K}_j+u\mathcal{K}_j+u^2\mathcal{K}_j\) \((u^3=0)\) listed as follows:

  1. (i)

    \(C_1\) is one of the following \(1+2^m\) ideals:

    $$\begin{aligned}&\langle (x-1)\rangle , \langle u^2,u(x-1)\rangle ;\\&\langle u^2+(x-1)\omega \rangle \hbox { where }\omega \in \mathbb {F}_{2^m}\hbox { and }\omega \ne 0. \end{aligned}$$
  2. (ii)

    Let \(2\le j\le \lambda \). Then \(C_j\) is one of the following \(1+2^{\frac{d_j}{2}m}\) ideals:

    $$\begin{aligned}&\langle f_j(x)\rangle , \langle u^2, uf_j(x)\rangle ;\\&\langle u^2+f_j(x)\omega \rangle \hbox { where }\omega \in \varTheta _{j,1}. \end{aligned}$$
  3. (iii)

    Let \(\lambda +1\le j\le \lambda +\epsilon \). Then the pair \((C_j,C_{j+\epsilon })\) of ideals is one of the following \(7+3\cdot 2^{d_jm}\) cases listed in the following table:

\(\mathcal {L}\)

\(C_j\) (mod \(f_j(x)^2\))

\(|C_j|\)

\(C_{j+\epsilon }\) (mod \(f_{j+\epsilon }(x)^2\))

4

\(\bullet \) \(\langle u^i\rangle \)\((i=0,1,2,3)\)

\(4^{(3-i)d_jm}\)

\(\diamond \) \(\langle u^{3-i}\rangle \)

3

\(\bullet \) \(\langle u^sf_j(x)\rangle \) (\(0\le s\le 2\))

\(2^{(3-s)d_jm}\)

\(\diamond \) \(\langle u^{3-s},f_{j+\epsilon }(x)\rangle \)

\(2^{d_jm}-1\)

\(\bullet \) \(\langle u+f_j(x)\omega \rangle \)

\(4^{2d_jm}\)

\(\diamond \) \(\langle u^2+uf_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

\(2^{d_jm}-1\)

\(\bullet \) \(\langle u^2+uf_j(x)\omega \rangle \)

\(4^{d_jm}\)

\(\diamond \) \(\langle u+f_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

\(2^{d_jm}-1\)

\(\bullet \) \(\langle u^2+f_j(x)\omega \rangle \)

\(2^{3d_jm}\)

\(\diamond \) \(\langle u^2+f_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

3

\(\bullet \) \(\langle u^i,u^sf_j(x)\rangle \)

\(2^{(6-(i+s))d_jm}\)

\(\diamond \) \(\langle u^{3-s}, u^{3-i}f_{j+\epsilon }(x)\rangle \)

 

\((0\le s<i\le 2)\)

  

where \(\mathcal {L}\) is the number of pairs \((C_j,C_{j+\epsilon })\) in the same row, \(\omega =\omega (x)\in \mathcal {F}_j=\frac{\mathbb {F}_{2^m}[x]}{\langle f_j(x)\rangle }\) with \(\omega \ne 0\), and \(\omega ^{\prime }=\delta _jx^{-d_j}\omega (x^{-1}) \ (\mathrm{mod} \ f_{j+\epsilon }(x)).\)

Case \(k=5\)

\(\diamondsuit \) Using the notation in Theorem 3.3(ii), the number of self-dual cyclic codes of length 2n over the ring \(\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}+u^2\mathbb {F}_{2^m}+u^3\mathbb {F}_{2^m}+u^4\mathbb {F}_{2^m}\) \((u^5=0)\) is

$$\begin{aligned} (1+2^m+4^m)\cdot \prod _{j=2}^\lambda (1+2^{\frac{d_j}{2}m}+2^{d_jm}) \cdot \prod _{j=\lambda +1}^{\lambda +\epsilon }(11+7\cdot 2^{d_jm}+3\cdot 4^{d_jm}). \end{aligned}$$

Precisely, all these codes are given by

$$\begin{aligned} \mathcal{C}=\left( \oplus _{j=1}^\lambda \varepsilon _j(x)C_j\right) \oplus \left( \oplus _{j=\lambda +1}^{\lambda +\epsilon }(\varepsilon _{j}(x)C_{j}\oplus \varepsilon _{j+\epsilon }(x)C_{j+\epsilon })\right) , \end{aligned}$$

where \(C_j\) is an ideal of \(\mathcal{K}_j+u\mathcal{K}_j+u^2\mathcal{K}_j+u^3\mathcal{K}_j+u^4\mathcal{K}_j\) \((u^5=0)\) listed as follows:

  1. (i)

    Let \(\lambda +1\le j\le \lambda +\epsilon \). Then the pair \((C_j,C_{j+\epsilon })\) of ideals is one of the following \(11+7\cdot 2^{d_jm}+3\cdot 4^{d_jm}\) cases listed in the following table:

    \(\mathcal {L}\)

    \(C_j\) (mod \(f_j(x)^2\))

    \(|C_j|\)

    \(C_{j+\epsilon }\) (mod \(f_{j+\epsilon }(x)^2\))

    6

    \(\bullet \) \(\langle u^i\rangle \)\((0\le i\le 5)\)

    \(4^{(5-i)d_jm}\)

    \(\diamond \) \(\langle u^{5-i}\rangle \)

    5

    \(\bullet \) \(\langle u^sf_j(x)\rangle \)

    \(2^{(5-s)d_jm}\)

    \(\diamond \) \(\langle u^{5-s},f_{j+\epsilon }(x)\rangle \)

     

    (\(0\le s\le 4\))

      

    \(4(2^{d_jm}-1)\)

    \(\bullet \) \(\langle u^i+u^{i-1}f_j(x)\omega \rangle \)

    \(4^{(5-i)d_jm}\)

    \(\diamond \) \(\langle u^{4-i}f_{j+\epsilon }(x)\omega ^{\prime }\)

     

    (\(i=1,2,3,4\))

     

    \(+u^{5-i}\rangle \)

    \(4^{d_jm}-2^{d_jm}\)

    \(\bullet \) \(\langle u^2+f_j(x)\vartheta \rangle \)

    \(4^{3d_jm}\)

    \(\diamond \) \(\langle u^{3}+uf_{j+\epsilon }(x)\vartheta ^{\prime }\rangle \)

    \(4^{d_jm}-2^{d_jm}\)

    \(\bullet \) \(\langle u^3+uf_j(x)\vartheta \rangle \)

    \(4^{2d_jm}\)

    \(\diamond \) \(\langle u^{2}+f_{j+\epsilon }(x)\vartheta ^{\prime }\rangle \)

    \(4^{d_jm}-2^{d_jm}\)

    \(\bullet \) \(\langle u^3+f_j(x)\vartheta \rangle \)

    \(2^{5d_jm}\)

    \(\diamond \) \(\langle u^3+f_{j+\epsilon }(x)\vartheta ^{\prime }\rangle \)

    \(2^{d_jm}-1\)

    \(\bullet \) \(\langle u^4+f_j(x)\omega \rangle \)

    \(2^{5d_jm}\)

    \(\diamond \) \(\langle u^4+f_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

    \(2^{d_jm}-1\)

    \(\bullet \) \(\langle u^4+uf_j(x)\omega \rangle \)

    \(2^{4d_jm}\)

    \(\diamond \) \(\langle u^3+f_{j+\epsilon }(x)\omega ^{\prime },\)

       

    \(uf_{j+\epsilon }(x)\rangle \)

    \(2^{d_jm}-1\)

    \(\bullet \) \(\langle u^4+u^2f_j(x)\omega \rangle \)

    \(2^{3d_jm}\)

    \(\diamond \) \(\langle u^2+f_{j+\epsilon }(x)\omega ^{\prime },\)

       

    \(uf_{j+\epsilon }(x)\rangle \)

    10

    \(\bullet \) \(\langle u^i,u^sf_j(x)\rangle \)

    \(2^{(10-(i+s))d_jm}\)

    \(\diamond \) \(\langle u^{5-s}, u^{5-i}f_{j+\epsilon }(x)\rangle \)

     

    \((0\le s<i\le 4)\)

      

    \(2^{d_jm}-1\)

    \(\bullet \) \(\langle u^2+f_j(x)\omega ,uf_j(x)\rangle \)

    \(2^{7d_jm}\)

    \(\diamond \) \(\langle u^4+u^2f_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

    \(2^{d_jm}-1\)

    \(\bullet \) \(\langle u^3+f_j(x)\omega ,uf_j(x)\rangle \)

    \(2^{6d_jm}\)

    \(\diamond \) \(\langle u^4+uf_{j+\epsilon }(x)\omega ^{\prime }\rangle \)

    \(2^{d_jm}-1\)

    \(\bullet \) \(\langle u^3+uf_j(x)\omega ,\)

    \(2^{5d_jm}\)

    \(\diamond \) \(\langle u^3+uf_{j+\epsilon }(x)\omega ^{\prime },\)

     

    \(u^2f_j(x)\rangle \)

     

    \(u^2f_{j+\epsilon }(x)\rangle \)

    where \(\mathcal {L}\) is the number of pairs \((C_j,C_{j+\epsilon })\) in the same row;

    \(\omega =\omega (x)\in \mathcal {F}_j=\frac{\mathbb {F}_{2^m}[x]}{\langle f_j(x)\rangle }\), \(\omega \ne 0\) and

    $$\begin{aligned} \omega ^{\prime }=\delta _jx^{-d_j}\omega (x^{-1}) \ (\mathrm{mod} \ f_{j+\epsilon }(x)); \end{aligned}$$

    \(\vartheta =a_0(x)+ua_1(x)\) with \(a_0(x),a_1(x)\in \mathcal {F}_j\) and \(a_0(x)\ne 0\), and

    $$\begin{aligned} \vartheta ^{\prime }=\delta _jx^{-d_j}\left( a_0(x^{-1})+ua_1(x^{-1})\right) \ (\mathrm{mod} \ f_{j+\epsilon }(x)). \end{aligned}$$
  2. (ii)

    \(C_1\) is one of the following \(1+2^m+4^m\) ideals:

    \(\langle (x-1)\rangle \);

    \(\langle u^3+(x-1)\omega \rangle \) where \(\omega =a_0+ua_1\), \(a_0,a_1\in \mathbb {F}_{2^m}\) and \(a_0\ne 0\);

    \(\langle u^4+(x-1)\omega \rangle \) where \(\omega \in \mathbb {F}_{2^m}\) and \(\omega \ne 0\);

    \(\langle u^3, u^2(x-1)\rangle \), \(\langle u^4, u(x-1)\rangle \);

    \(\langle u^3+u(x-1)\omega , u^2(x-1)\rangle \) where \(\omega \in \mathbb {F}_{2^m}\) and \(\omega \ne 0\).

  3. (iii)

    Let \(2\le j\le \lambda \). Then \(C_j\) is one of the following \(1+2^{\frac{d_j}{2}m}+2^{d_jm}\) ideals:

    \(\langle f_j(x)\rangle \);

    \(\langle u^3+f_j(x)\omega \rangle \) where \(\omega =a_0(x)+ua_1(x)\), \(a_0(x)\in \varTheta _{j,1}\) and \(a_1(x)\in \{0\}\cup \varTheta _{j,1}\);

    \(\langle u^4+f_j(x)\omega \rangle \) where \(\omega \in \varTheta _{j,1}\);

    \(\langle u^3, u^2f_j(x)\rangle \), \(\langle u^4, uf_j(x)\rangle \);

    \(\langle u^3+uf_j(x)\omega , u^2f_j(x)\rangle \) where \(\omega \in \varTheta _{j,1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cao, Y. & Fu, FW. On self-duality and hulls of cyclic codes over \(\frac{\mathbb {F}_{2^m}[u]}{\langle u^k\rangle }\) with oddly even length. AAECC 32, 459–493 (2021). https://doi.org/10.1007/s00200-019-00408-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-019-00408-9

Keywords

Mathematics Subject Classification

Navigation