Skip to main content

Advertisement

Log in

A modification and validation of quantitative morphometry classification system for osteoporotic vertebral compressive fractures in mainland Chinese

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study described a modified quantitative morphometry (mQM) system adapted to specific reference values for Mainland Chinese population. The mQM system is validated using the Genant Semiquantative system and is sensitive for detecting vertebral height changes and predicting cement leakage after percutaneous kyphoplasty (PKP) in patients with osteoporotic vertebral compressive fracture (OVCF).

Introduction

OVCF is a manifestation of osteoporosis. To improve clinical management of osteoporosis, the quantitative morphometry (QM) system has been widely used for the early diagnosis and precise classification of OVCF in developed countries. Here, we present an mQM system and validated its use in detecting OVCF in Mainland Chinese.

Methods

Using our mQM system, the pre- and post-operative values of vertebral heights were measured and evaluated in 309 Mainland Chinese who received percutaneous kyphoplasty (PKP) as OVCF treatment. Measurements and classification of fractures from the mQM system were validated by comparing to values obtained by the Genant semiquantative (SQ) method. Moreover, we evaluated the sensitivity of the mQM system by its ability to detect restoration of vertebral heights and predict cement leakage after PKP.

Results

The five classification of fractures, No deformity (ND), anterior wedge (AW), posterior wedge (PW), biconcavity (BC), and compression (CP), evaluated by the mQM method shared similar distribution characteristics compared to those obtained by the SQ method. In addition, mQM evaluation showed that the vertebra height of all fracture types showed significant restoration after PKP. The incidence of cement leakage was most common in CP (37.5%), followed by AW (31.6%), BC (26.5%), ND (23.7%), and PW (0.0%).

Conclusions

Our mQM system is suitable for classification of fractures, detection of vertebral height restoration, and correlation of cement leakage after PKP in Mainland Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nayak S, Greenspan SL (2016) Cost-effectiveness of osteoporosis screening strategies for men. J Bone Miner Res 31(6):1189–1199. https://doi.org/10.1002/jbmr.2784

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schousboe JT (2016) Epidemiology of vertebral fractures. J Clin Densitom 19(1):8–22. https://doi.org/10.1016/j.jocd.2015.08.004

    Article  PubMed  Google Scholar 

  3. Zeytinoglu M, Jain RK, Vokes TJ (2017) Vertebral fracture assessment: enhancing the diagnosis, prevention, and treatment of osteoporosis. Bone 104:54–65. https://doi.org/10.1016/j.bone.2017.03.004

    Article  PubMed  Google Scholar 

  4. Pinheiro MM, Reis Neto ET, Machado FS et al. (2010) Risk factors for osteoporotic fractures and low bone density in pre and postmenopausal women. Rev Saude Publica 44 (3):479–485

    Article  Google Scholar 

  5. Klotzbuecher CM, Ross PD, Landsman PB et al. (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15 (4):721–739. https://doi.org/10.1359/jbmr.2000.15.4.721

    Article  Google Scholar 

  6. Postacchini R, Paolino M, Faraglia S et al. (2013) Assessment of patient’s pain-related behavior at physical examination may allow diagnosis of recent osteoporotic vertebral fracture. Spine J 13 (9):1126–1133. https://doi.org/10.1016/j.spinee.2013.07.427

    Article  Google Scholar 

  7. Clark EM, Gooberman-Hill R, Peters TJ (2016) Using self-reports of pain and other variables to distinguish between older women with back pain due to vertebral fractures and those with back pain due to degenerative changes. Osteoporos Int 27(4):1459–1467. https://doi.org/10.1007/s00198-015-3397-2

    Article  CAS  PubMed  Google Scholar 

  8. Upadhye S, Kumbhare D (2016) What are the most useful red flags for suspected vertebral fracture in patients with low back pain in the emergency department? Ann Emerg Med 67(1):81–82. https://doi.org/10.1016/j.annemergmed.2015.04.026

    Article  PubMed  Google Scholar 

  9. Freitas SS, Barrett-Connor E, Ensrud KE et al. (2008) Rate and circumstances of clinical vertebral fractures in older men. Osteoporos Int 19 (5):615–623. https://doi.org/10.1007/s00198-007-0510-1

    Article  Google Scholar 

  10. Huang Z, Zhang L (2012) Treatment of osteoporotic vertebral compressive fractures with percutaneous kyphoplasty and oral Zishengukang. J Tradit Chin Med 32(4):561–564

    Article  Google Scholar 

  11. Masala S, Cesaroni A, Sergiacomi G et al. (2004) Percutaneous kyphoplasty: new treatment for painful vertebral body fractures. In Vivo 18 (2):149–153

  12. Yimin Y, Zhiwei R, Wei M et al. (2013) Current status of percutaneous vertebroplasty and percutaneous kyphoplasty—a review. Med Sci Monit 19:826–836. https://doi.org/10.12659/MSM.889479

    Article  Google Scholar 

  13. Hoashi JS, Thomas SM, Goodwin RC et al. (2016) Balloon kyphoplasty for managing intractable pain in pediatric pathologic vertebral fractures. J Pediatr Orthop. https://doi.org/10.1097/BPO.0000000000000886

    Article  Google Scholar 

  14. Noldge G, DaFonseca K, Grafe I et al. (2006) [Balloon kyphoplasty in the treatment of back pain]. Radiologe 46 (6):506–512. https://doi.org/10.1007/s00117-006-1384-5

    Article  Google Scholar 

  15. Riesner HJ, Kiupel K, Lang P et al. (2016) Clinical relevance of cement leakage after radiofrequency kyphoplasty vs. balloon kyphoplasty: a prospective randomised study. Z Orthop Unfall 154 (4):370–376. https://doi.org/10.1055/s-0042-104069

    Article  Google Scholar 

  16. Genant HK, Jergas M, Palermo L et al. (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis the study of osteoporotic fractures research group. J Bone Miner Res 11 (7):984–996. https://doi.org/10.1002/jbmr.5650110716

    Article  Google Scholar 

  17. Ferrar L, Jiang G, Adams J et al. (2005) Identification of vertebral fractures: an update. Osteoporos Int 16 (7):717–728. https://doi.org/10.1007/s00198-005-1880-x

    Article  CAS  Google Scholar 

  18. Eastell R, Cedel SL, Wahner HW et al. (1991) Classification of vertebral fractures. J Bone Miner Res 6 (3):207–215. https://doi.org/10.1002/jbmr.5650060302

    Article  Google Scholar 

  19. McCloskey EV, Spector TD, Eyres KS et al. (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3 (3):138–147

    Article  CAS  Google Scholar 

  20. Smith-Bindman R, Cummings SR, Steiger P et al. (1991) A comparison of morphometric definitions of vertebral fracture. J Bone Miner Res 6 (1):25–34. https://doi.org/10.1002/jbmr.5650060106

    Article  Google Scholar 

  21. Ning L, Song LJ, Fan SW et al. (2017) Vertebral heights and ratios are not only race-specific, but also gender- and region-specific: establishment of reference values for mainland Chinese. Arch Osteoporos 12 (1):88. https://doi.org/10.1007/s11657-017-0383-7

  22. Yan L, He B, Guo H et al. (2016) The prospective self-controlled study of unilateral transverse process-pedicle and bilateral puncture techniques in percutaneous kyphoplasty. Osteoporos Int 27 (5):1849–1855. https://doi.org/10.1007/s00198-015-3430-5

    Article  Google Scholar 

  23. Tome-Bermejo F, Pinera AR, Duran-Alvarez C et al. (2014) Identification of risk factors for the occurrence of cement leakage during percutaneous vertebroplasty for painful osteoporotic or malignant vertebral fracture. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000000294, 39, E700

    Article  Google Scholar 

  24. Grados F, Fechtenbaum J, Flipon E et al. (2009) Radiographic methods for evaluating osteoporotic vertebral fractures. Joint Bone Spine 76 (3):241–247. https://doi.org/10.1016/j.jbspin.2008.07.017

    Article  Google Scholar 

  25. Genant HK, Wu CY, van Kuijk C et al. (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8 (9):1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  Google Scholar 

  26. Black DM, Reiss TF, Nevitt MC et al. (1993) Design of the fracture intervention trial. Osteoporos Int 3 Suppl 3:S29–S39

    Article  Google Scholar 

  27. Harris ST, Watts NB, Genant HK et al. (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) study group. JAMA 282 (14):1344–1352

  28. Siris E, Adachi JD, Lu Y et al. (2002) Effects of raloxifene on fracture severity in postmenopausal women with osteoporosis: results from the MORE study. Multiple Outcomes of Raloxifene Evaluation Osteoporos Int 13 (11):907–913. https://doi.org/10.1007/s001980200125

    Article  CAS  Google Scholar 

  29. Yang H, Pan J, Wang G (2014) A review of osteoporotic vertebral fracture nonunion management. Spine (Phila Pa 1976) 39 (26 Spec No.):B4–B6. https://doi.org/10.1097/BRS.0000000000000538

    Article  Google Scholar 

  30. El Maghraoui A, Sadni S, El Maataoui A et al. (2015) Influence of obesity on vertebral fracture prevalence and vitamin D status in postmenopausal women. Nutr Metab (Lond) 12:44. https://doi.org/10.1186/s12986-015-0041-2

  31. Greene DL, Isaac R, Neuwirth M et al. (2007) The eggshell technique for prevention of cement leakage during kyphoplasty. J Spinal Disord Tech 20 (3):229–232. https://doi.org/10.1097/01.bsd.0000211276.76024.30

    Article  Google Scholar 

  32. Uri IF, Garnon J, Tsoumakidou G et al. (2015) An ice block: a novel technique of successful prevention of cement leakage using an ice ball. Cardiovasc Intervent Radiol 38 (2):470–474. https://doi.org/10.1007/s00270-014-0991-1

    Article  Google Scholar 

  33. Corcos G, Dbjay J, Mastier C et al. (2014) Cement leakage in percutaneous vertebroplasty for spinal metastases: a retrospective evaluation of incidence and risk factors. Spine (Phila Pa 1976) 39 (5):E332–E338. https://doi.org/10.1097/BRS.0000000000000134

    Article  Google Scholar 

  34. Wang C, Fan S, Liu J et al. (2014) Basivertebral foramen could be connected with intravertebral cleft: a potential risk factor of cement leakage in percutaneous kyphoplasty. Spine J 14 (8):1551–1558. https://doi.org/10.1016/j.spinee.2013.09.025

    Article  Google Scholar 

  35. Zhu SY, Zhong ZM, Wu Q et al. (2016) Risk factors for bone cement leakage in percutaneous vertebroplasty: a retrospective study of four hundred and eighty five patients. Int Orthop 40 (6):1205–1210. https://doi.org/10.1007/s00264-015-3102-2

    Article  Google Scholar 

  36. Ruiz Santiago F, Tomas Munoz P, Moya Sanchez E et al. (2016) Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg 6 (6):772–784. https://doi.org/10.21037/qims.2016.12.04

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jasper H.N. Yik from the University of California, Davis, for editing this manuscript.

Funding

The authors thank the National Natural Science Fund of China (grant No: 81501912) and Zhejiang Provincial Natural Science Foundation of China (grant No: LQ15H060001) to Zi’ang Hu, as well as the National Natural Science Fund of China (grant No: 11701509) and China Postdoctoral Science Foundation (grant No: 2017M612021) to Li-Li Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-A. Hu.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, LJ., Wang, LL., Ning, L. et al. A modification and validation of quantitative morphometry classification system for osteoporotic vertebral compressive fractures in mainland Chinese. Osteoporos Int 29, 2495–2504 (2018). https://doi.org/10.1007/s00198-018-4641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4641-3

Keywords

Navigation