Skip to main content

Advertisement

Log in

The skeletal impact of the chemotherapeutic agent etoposide

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Effects of the chemotherapeutic agent etoposide on the skeleton were determined in mice. Numbers of bone marrow cells were reduced and myeloid cells were increased. Bone volume was significantly decreased with signs of inhibition of bone formation. Etoposide after pre-treatment with zoledronic acid still reduced bone but overall bone volume was higher than with etoposide alone.

Introduction

Chemotherapeutics target rapidly dividing tumor cells yet also impact hematopoietic and immune cells in an off target manner. A wide array of therapies have negative side effects on the skeleton rendering patients osteopenic and prone to fracture. This study focused on the pro-apoptotic chemotherapeutic agent etoposide and its short- and long-term treatment effects in the bone marrow and skeleton.

Methods

Six- to 16-week-old mice were treated with etoposide (20–25 mg/kg) or vehicle control in short-term (daily for 5–9 days) or long-term (3×/week for 17 days or 6 weeks) regimens. Bone marrow cell populations and their phagocytic/efferocytic functions were analyzed by flow cytometry. Blood cell populations were assessed by CBC analysis. Bone volume and area compartments and osteoclast numbers were measured by microCT, histomorphometry, and TRAP staining. Biomarkers of bone formation (P1NP) and resorption (TRAcP5b) were assayed from serum. Gene expression in bone marrow was assessed using qPCR.

Results

Flow cytometric analysis of the bone marrow revealed short-term etoposide reduced overall cell numbers and B220+ cells, with increased marrow apoptotic (AnnexinV+PI) cells, mesenchymal stem-like cells, and CD68+, CD45+, and CD11b+ monocyte/myeloid cells (as a percent of the total marrow). After 6 weeks, the CD68+, Gr1+, CD11b+, and CD45+ cell populations were still relatively increased in etoposide-treated bone marrow. Skeletal phenotyping revealed etoposide decreased bone volume, trabecular thickness, and cortical bone volume. Gene expression in the marrow for the leptin receptor and CXCL12 were reduced with short-term etoposide, and an increased ratio of RANKL/OPG mRNA was observed. In whole bone, Runx2 and osteocalcin gene expressions were reduced, and in serum, P1NP was significantly reduced with etoposide. Treatment with the antiresorptive agent zoledronic acid prior to etoposide increased bone volume and improved the etoposide-induced decrease in skeletal parameters.

Conclusions

These data suggest that etoposide induces apoptosis in the bone marrow and significantly reduces parameters of bone formation with rapid reduction in bone volume. Pre-treatment with an antiresorptive agent results in a preservation of bone mass. Preventive approaches to preserving the skeleton should be considered in human clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  CAS  PubMed  Google Scholar 

  2. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218

    Article  CAS  PubMed  Google Scholar 

  4. Baldwin EL, Osheroff N (2005) Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents 5:363–372

    Article  CAS  PubMed  Google Scholar 

  5. Colpo A, Hochberg E, Chen YB (2012) Current status of autologous stem cell transplantation in relapsed and refractory Hodgkin’s lymphoma. Oncologist 17:80–90

    Article  CAS  PubMed  Google Scholar 

  6. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433

    Article  CAS  PubMed  Google Scholar 

  7. Montecucco A, Biamonti G (2007) Cellular response to etoposide treatment. Cancer Lett 252:9–18

    Article  CAS  PubMed  Google Scholar 

  8. Wilson CL, Ness KK (2013) Bone mineral density deficits and fractures in survivors of childhood cancer. Curr Osteoporosis Rep 11:329–337

    Article  Google Scholar 

  9. Schündeln MM, Hauffa PK, Bauer JJ, Temming P, Sauerwein W, Biewald E, Bornfeld N, Hauffa BP, Grasemann C (2015) Pediatric survivors of retinoblastoma are at risk for altered bone metabolism after chemotherapy treatment early in life. Pediatr Hematol Oncol 32:455–466

    Article  PubMed  Google Scholar 

  10. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, Green DM, Armstrong GT, Nottage KA, Jones KE, Sklar CA, Srivastava DK, Robison LL (2013) Clinical ascertainment of health outcomes among adults treated for childhood cancer. J Am Med Assoc 309:2371–2381

    Article  CAS  Google Scholar 

  11. Petropoulou AD, Porcher R, Herr AL, Devergie A, Brentano TF, Ribaud P, Pinto FO, Rocha V, Peffault de Latour R, Orcel P, Socie G, Robin M (2010) Prospective assessment of bone turnover and clinical bone diseases after allogeneic hematopoietic stem-cell transplantation. Transplantation 89:1354–1361

    Article  PubMed  Google Scholar 

  12. Schimmer AD, Mah K, Bordeleau L, Cheung A, Ali V, Falconer M, Trus M, Keating A (2001) Decreased bone mineral density is common after autologous blood or marrow transplantation. Bone Marrow Transplant 28:387–391

    Article  CAS  PubMed  Google Scholar 

  13. Ganguly S, Divine CL, Aljitawi OS, Abhyankar S, McGuirk JP, Graves L (2012) Prophylactic use of zoledronic acid to prevent early bone loss is safe and feasible in patients with acute myeloid leukemia undergoing allogeneic stem cell transplantation. Clin Transpl 26:447–453

    Article  CAS  Google Scholar 

  14. Pettway GJ, Schneider A, Koh AJ, Widjaja E, Morris MD, Meganck JA, Goldstein SA, McCauley LK (2005) Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone. Bone 36:959–970

    Article  CAS  PubMed  Google Scholar 

  15. Cho SW, Pirih FQ, Koh AJ, Michalski M, Eber MR, Ritchie K, Sinder BP, Oh S, Al-Dujaili SA, Lee J, Kozloff K, Danciu T, Wronski TJ, McCauley LK (2013) The soluble interleukin-6 receptor is a mediator of hematopoietic and skeletal actions of parathyroid hormone. J Biol Chem 288:6814–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rabinowitz SS, Gordon S (1991) Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli. J Exp Med 174:827–836

    Article  CAS  PubMed  Google Scholar 

  17. Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D (1996) Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci U S A 93:14833–14838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T, Shimmura S, Miyawaki A, Nakagawa T, Suda T, Okano H, Matsuzaki Y (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou B, Yue R, Murphy MM, Peyer J, Morrison SJ (2014) Leptin receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 5:845–848

    Article  Google Scholar 

  21. Cosman F, Jan de Beur S, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montecucco A, Zanetta F, Biamonti G (2015) Molecular mechanisms of etoposide. EXCI J 14:95–108

    Google Scholar 

  23. Orlikova B, Legrand N, Panning J, Dicato M, Diederich M (2014) Anti-inflammatory and anticancer drugs from nature. Cancer Treat Res 159:123–143

    Article  CAS  PubMed  Google Scholar 

  24. Remichkova M, Yordanov M, Dimitrova P (2008) Etoposide attenuates zymosan-induced shock in mice. Inflammation 31:57–64

    Article  CAS  PubMed  Google Scholar 

  25. Nicolay NH, Ruhle A, Lopez Perez R, Trinh T, Sisombath S, Weber KJ, Schmezer P, Ho AD, Debus J, Saffrich R, Huber PE (2016) Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer Lett 374:75–84

    Article  CAS  PubMed  Google Scholar 

  26. Rellick SL, O’Leary H, Piktel D, Walton C, Fortney JE, Akers SM, Martin KH, Denvir J, Boskovic G, Primerano DA, Vos J, Bailey N, Gencheva M, Gibson LF (2016) Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One 7:e30758

    Article  Google Scholar 

  27. Cegiela U, Folwarczna J, Pytlik M, Janiec W (2004) Effect of etoposide on the processes of osseous tissue remodeling in rats. Pol J Pharmacol 56:327–336

    CAS  PubMed  Google Scholar 

  28. Xian CJ, Cool JC, van Gangelen J, Foster BK, Howarth GS (2007) Effects of etoposide and cyclophosphamide acute chemotherapy on growth plate and metaphyseal bone in rats. Cancer Biol Ther 6:170–177

    Article  CAS  PubMed  Google Scholar 

  29. Calvi LM, Adams GB, Welbrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  30. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem cell niche. Blood 105:2631–2639

    Article  CAS  PubMed  Google Scholar 

  31. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroeder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181:1232–1244

    Article  CAS  PubMed  Google Scholar 

  32. Sinder BP, Pettit AR, McCauley LK (2015) Macrophages: their emerging roles in bone. J Bone Miner Res 30:2140–2149

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26:1517–1532

    Article  CAS  PubMed  Google Scholar 

  34. Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, Pienta KJ, Atabai K, Roca H, McCauley LK (2014) Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J Biol Chem 289:24560–24572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL (2011) Modulation of macrophage efferocytosis in inflammation. Front Immunol 2:1–10

    Article  Google Scholar 

  36. Michalski MN, Koh AJ, Weidner S, Roca H, McCauley LK (2016) Modulation of osteoblastic cell efferocytosis by bone marrow macrophages. J Cell Biochem 117:2697–2706

    Article  CAS  PubMed  Google Scholar 

  37. Koh AJ, Novince CM, Li X, Wang T, Taichman RS, McCauley LK (2011) An irradiation-altered bone marrow microenvironment impacts anabolic actions of PTH. Endocrinology 152:4525–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int 82:108–115

    Article  CAS  PubMed  Google Scholar 

  39. Pierroz DD, Bonnet N, Baldock PA, Ominsky MS, Stolina M, Kostenuik PJ, Ferrari SL (2010) Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. J Biol Chem 285:28164–28173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harre U, Keppeler H, Ipseiz N, Derer A, Poller K, Aigner M, Schett G, Herrmann M, Lauber K (2012) Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity 45:612–619

    Article  CAS  PubMed  Google Scholar 

  41. Rizzoli R, Body JJ, Brandi ML, Cannata-Andia J, Chappard D, El Maghraoui A, Gluer CC, Kendler DL, Napoli N, Papaioannou A, Pierroz DS, Rahme M, Van Poznak CH, de Villiers TJ, El Hajj Fuleihan G (2013) Cancer-associated bone disease. Osteoporos Int 24:2929–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Quach JM, Askmyr M, Jovic T, Baker EK, Walsh NC, Harrison SJ, Neeson P, Ritchie D, Ebeling PR, Purton LE (2015) Myelosuppressive therapies significantly increase pro-inflammatory cytokines and directly cause bone loss. J Bone Miner Res 30:886–897

    Article  CAS  PubMed  Google Scholar 

  43. Soki FN, Li X, Berry JE, Koh AJ, Sinder BP, Qian X, Kozloff KM, Taichman RS, McCauley LK (2013) The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches. J Cell Biochem 114:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guise TA, Mohammad KS, Clines G, Stebbens EG, Wong DH, Higgens LS, Vessella RL, Corey E, Padalecki SS, Suva L, Chirgwin JM (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 20:6213s–6216s

    Article  Google Scholar 

  45. Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, Eaton CL, Holen I (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20:2922–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khan AA, Morrison A, Hanley DA, Felsenberg D, LK MC, O’Ryan F, Reid IR, Ruggiero SL, Taguchi A, Tetradis S, Watts N, Brandi ML, Peters E, Guise T, Eastell R, Cheung AM, Morin SN, Masri B, Cooper C, Morgan SL, Obermayer-Pietsch B, Langdahl BL, Al Dabagh R, Davison KS, Kendler DL, Sandor GK, Josse RG, Bhandari M, El Rabbany M, Pierroz DD, Sulimani R, Saunders DP, Brown JP, Compston JE (2015) Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res 30:3–23

    Article  PubMed  Google Scholar 

  47. Lezot F, Chesneau J, Navet B, Gobin B, Amiaud J, Choi Y, Yagita H, Castaneda B, Berdal A, Mueller CG, Redini F, Heynamm D (2015) Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies. Bone 73:51–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH DK053904 and CA093900. We appreciate technical assistance by Chris Strayhorn (tissue preparation), Michelle Lynch (microCT), Stephanie Daignult-Newton (statistics), Anna Seydel, James Rhee, and Megan Michalski for bone preparation and analyses, and the Flow Cytometry Core at the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. McCauley.

Ethics declarations

All animal experiments were performed with the approval of the University of Michigan Committee for the Use and Care of Animals.

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, A.J., Sinder, B.P., Entezami, P. et al. The skeletal impact of the chemotherapeutic agent etoposide. Osteoporos Int 28, 2321–2333 (2017). https://doi.org/10.1007/s00198-017-4032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4032-1

Keywords

Navigation