Skip to main content

Bone Health in Cancer Patients

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Part of the book series: UNIPA Springer Series ((USS))

  • 3241 Accesses

Abstract

Several osteotropic tumors can have profound effects on bone health when they colonize the skeleton to form metastases. Morbidity from bone metastasis, referred to as skeletal-related events (SREs), which include fractures, cord compression, radiation to bone, and surgery to bone leads to impair quality of life and mortality. Emerging data have demonstrated the key role of bone marrow microenvironment in the metastatic processes suggesting novel therapeutic targets beside to bone target agents, bisphosphonates, and denosumab, that, currently, represent the standard of care. In this chapter, we focus on several anticancer drugs, already used in clinical practice, that have recently demonstrated bone effects in terms of improvement of bone scan response, reduction of the incidence of SREs, and bone pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243s–9s. https://doi.org/10.1158/1078-0432.CCR-06-0931.

    Article  PubMed  Google Scholar 

  2. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective: how many women have osteoporosis? J Bone Miner Res. 1992;7:1005–10.

    Article  PubMed  Google Scholar 

  4. Vessella RL, Corey E. Targeting factors involved in bone remodeling as treatment strategies in prostate Cancer bone metastasis. Clin Cancer Res. 2006;12:6285–91. https://doi.org/10.1158/1078-0432.CCR-06-0813.

    Article  Google Scholar 

  5. Mundy GR. Malignancy and the skeleton. Horm Metab Res. 1997;29:120–7.

    Article  CAS  PubMed  Google Scholar 

  6. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;8:1353–8.

    Google Scholar 

  7. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell and more. Endocr Rev. 2013;34:658–90. https://doi.org/10.1210/er.2012-1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11:411–25. https://doi.org/10.1038/nrc3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14:155–67. https://doi.org/10.1038/nrclinonc.2016.144.

    Article  CAS  PubMed  Google Scholar 

  10. Croucher PI, McdDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer. 2016;16:373–86. https://doi.org/10.1038/nrc.2016.44.

    Article  CAS  PubMed  Google Scholar 

  11. Sceneay J, Smyth MJ, Möller A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 2013;32:449–64. https://doi.org/10.1007/s10555-013-9420-1.

    Article  CAS  PubMed  Google Scholar 

  12. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

    Article  CAS  PubMed  Google Scholar 

  13. Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in cancer. Nat Rev Cancer. 2003;3:110–6. PubMed PMID: 12563310.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi N, Maeda K, Ishihara A, Uehara S, Kobayashi Y. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci (Landmark Ed). 2011;16:21–30. PubMed PMID: 21196156.

    Article  CAS  PubMed  Google Scholar 

  15. Dougall WC, Holen I, González Suárez E. Targeting RANKL in metastasis. Bonekey Rep. 2014;3:519. https://doi.org/10.1038/bonekey.2014.14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Poznak C, Cross SS, Saggese M, Hudis C, Panageas KS, Norton L, et al. Expression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor k B ligand (RANKL) in human breast tumours. J Clin Pathol. 2006;59:56–64. https://doi.org/10.1136/jcp.2005.026534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Danovi SA. Tumorigenesis: hormonally driven. Nat Rev Cancer. 2010;10:45. https://doi.org/10.1038/nrc2880.

    Article  CAS  Google Scholar 

  18. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7. https://doi.org/10.1038/nature09495.

    Article  CAS  PubMed  Google Scholar 

  19. Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F, Russo A, et al. Receptor Activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS One. 2011a;6:e19234. https://doi.org/10.1371/journal.pone.0019234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santini D, Perrone G, Roato I, Godio L, Pantano F, Grasso D, et al. Expression pattern of receptor activator of NFκB (RANK) in a series of primary solid tumors and related bone metastases. J Cell Physiol. 2011b;226:780–4. https://doi.org/10.1002/jcp.22402.

    Article  CAS  PubMed  Google Scholar 

  21. Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12:1372–9.

    Article  CAS  PubMed  Google Scholar 

  22. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 2011;470:548–53. https://doi.org/10.1038/nature09707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11:401–19. https://doi.org/10.1038/nrd3705.

    Article  CAS  PubMed  Google Scholar 

  25. Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G. Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res. 2009;15:4521–8. https://doi.org/10.1158/1078-0432.CCR-08-0543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spinella F, Rosanò L, Di Castro V, Nicotra MR, Natali PG, Bagnato A. Inhibition of cyclooxygenase-1 and -2 expression by targeting the endothelin a receptor in human ovarian carcinoma cells. Clin Cancer Res. 2004;10:4670–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sutcliffe AM, Clarke DL, Bradbury DA, Corbett LM, Patel JA, Knox AJ. Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle cells involves NF-kappaB and AP-1. Br J Pharmacol. 2009;157:436–50. https://doi.org/10.1111/j.1476-5381.2009.00143.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med. 1995;1:944–9.

    Article  CAS  PubMed  Google Scholar 

  29. Nelson JB, Chan-Tack K, Hedican SP, Magnuson SR, Opgenorth TJ, Bova GS, et al. Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res. 1996;56:663–8.

    CAS  PubMed  Google Scholar 

  30. Wülfing P, Diallo R, Kersting C, Wülfing C, Poremba C, Rody A, et al. Expression of endothelin-1, endothelin-A, and endothelin-B receptor in human breast cancer and correlation with long-term follow-up. Clin Cancer Res. 2003;9:4125–31.

    PubMed  Google Scholar 

  31. Carducci MA, Saad F, Abrahamsson PA, Dearnaley DP, Schulman CC, North SA, et al. Atrasentan Phase III Study Group Institutions. A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer. 2007;110:1959–66.

    Google Scholar 

  32. Nelson JB, Fizazi K, Miller K, Higano C, Moul JW, Akaza H, et al. Phase 3, randomized, placebo-controlled study of zibotentan (ZD4054) in patients with castration-resistant prostate cancer metastatic to bone. Cancer. 2012;118:5709–18.

    Google Scholar 

  33. Miller K, Moul JW, Gleave M, Fizazi K, Nelson JB, Morris T, et al. Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2013;16:187–92.

    Google Scholar 

  34. Fizazi K, Higano CS, Nelson JB, Gleave M, Miller K, Morris T, et al. Phase III, randomized, placebo-controlled study of docetaxel in combination with zibotentan in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2013;31:1740–7. Erratum in: J Clin Oncol. 2014;32:3461. Fizazi, Karim S [Corrected to Fizazi, Karim].

    Google Scholar 

  35. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555–62. PubMed PMID: 11544023.

    Article  CAS  PubMed  Google Scholar 

  36. Bissell MJ, LaBarge MA. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell. 2005;7:17–23. https://doi.org/10.1016/j.ccr.2004.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol. 1996;134:793–9. PubMed PMID: 8707856.

    Article  CAS  PubMed  Google Scholar 

  38. Demers MJ, Thibodeau S, Noël D, Fujita N, Tsuruo T, Gauthier R, et al. Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated sustained activation of Src overrides Fak-dependent signaling to MEK/Erk and/or PI3-K/Akt-1. J Cell Biochem. 2009;107:639–54. https://doi.org/10.1002/jcb.22131.

    Article  CAS  PubMed  Google Scholar 

  39. Simpson CD, Anyiwe K, Schimmer AD. Anoikis resistance and tumor metastasis. Cancer Lett. 2008;272:177–85. https://doi.org/10.1016/j.canlet.2008.05.029.

    Article  CAS  PubMed  Google Scholar 

  40. Windham TC, Parikh NU, Siwak DR, Summy JM, McConkey DJ, Kraker AJ, et al. Src activation regulates anoikis in human colon tumor cell lines. Oncogene. 2002;21:7797. https://doi.org/10.1038/sj.onc.1205989.

    Article  CAS  PubMed  Google Scholar 

  41. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Google Scholar 

  42. Ricci E, Mattei E, Dumontet C, Eaton CL, Hamdy F, van der Pluije G, et al. Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression. Prostate. 2017;73:1738–46. https://doi.org/10.1002/pros.22689.

    Article  CAS  Google Scholar 

  43. Lee YC, Jin JK, Cheng CJ, Huang CF, Song JH, Huang M, et al. Targeting constitutively activated β1 integrins inhibits prostate cancer metastasis. Mol Cancer Res. 2013;11:405–17. https://doi.org/10.1158/1541-7786.mcr-12-0551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beavon IR. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur J Cancer. 2000;36:1607–20. PubMed PMID: 10959047.

    Article  CAS  PubMed  Google Scholar 

  45. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13:7003–11. PubMed PMID: 18056176.

    Article  CAS  PubMed  Google Scholar 

  46. Saha B, Arase A, Imam SS, Tsao-Wei D, Naritoku WY, Groshen S, et al. Overexpression of E-cadherin and beta-catenin proteins in metastatic prostate cancer cells in bone. Prostate. 2008;68:78–84. PubMed PMID: 18008331.

    Article  PubMed  Google Scholar 

  47. Tamura D, Hiraga T, Myoui A, Yoshikawa H, Yoneda T. Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol. 2008;33:17–24. PubMed PMID: 18575746.

    CAS  PubMed  Google Scholar 

  48. Jin JK, Dayyani F, Gallick GE. Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer. 2011;128:2545–61. https://doi.org/10.1002/ijc.26024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, et al. Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res. 2010;70:4580–9. https://doi.org/10.1158/0008-5472.can-09-3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M, et al. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci. 2014;19:379–407.

    Article  Google Scholar 

  51. Manca P, Pantano F, Iuliani M, Ribelli G, De Lisi D, Danesi R, et al. Determinants of bone specific metastasis in prostate cancer. Crit Rev Oncol Hematol. 2017;112:59–66. https://doi.org/10.1016/j.critrevonc.

    Article  PubMed  Google Scholar 

  52. Ferreira A, Alho I, Casimiro S. Bone remodeling markers and bone metastases: from cancer research to clinical implications. BoneKEy Rep. 2015;668:1–9. https://doi.org/10.1038/bonekey.2015.35.

    Article  CAS  Google Scholar 

  53. Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res. 2005;65:7554–61. https://doi.org/10.1158/0008-5472.CAN-05-1317.

    Article  CAS  PubMed  Google Scholar 

  54. Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–9. https://doi.org/10.1016/j.critrevonc.2015.12.005.

    Article  PubMed  Google Scholar 

  55. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56. https://doi.org/10.1016/j.cell.2012.11.024.

    Article  CAS  PubMed  Google Scholar 

  56. Hall CL, Daignault SD, Shah RB, Pienta KJ, Keller ET. Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate. 2008;68:1396–404. https://doi.org/10.1002/pros.20805.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Thudi NK, Martin CK, Murahari S, Shu ST, Lanigan LG, Werbeck JL, et al. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate. 2011;71:615–25. https://doi.org/10.1002/pros.21277.

    Article  CAS  PubMed  Google Scholar 

  58. Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET. Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res. 2008;68:5785–94. https://doi.org/10.1158/0008-5472.CAN-07-6541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rachner TD, Thiele S, Göbel A, Browne A, Fuessel S, Erdmann K, et al. High serum levels of Dickkopf-1 are associated with a poor prognosis in prostate cancer patients. BMC Cancer. 2014;14:649. https://doi.org/10.1186/1471-2407-14-649.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen WY, Liu SY, Chang YS, Yin JJ, Yeh HL, Mouhieddine TH, et al. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget. 2015;6:441–57. PubMed PMID: 25436980; PubMed Central PMCID: PMC4381606.

    Article  PubMed  Google Scholar 

  61. Iyer SP, Beck JT, Stewart AK, Shah J, Kelly KR, Isaacs R, et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol. 2014;167:366–75.

    Google Scholar 

  62. Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 2011;11:597–606. https://doi.org/10.1038/nri3049.

    Article  CAS  PubMed  Google Scholar 

  63. Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta KJ, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283:4283–94. PubMed PMID: 18057003.

    Article  CAS  PubMed  Google Scholar 

  64. Ibrahim T, Sacanna E, Gaudio M, Mercatali L, Scarpi E, Zoli W, et al. Role of RANK, RANKL, OPG, and CXCR4 tissue markers in predicting bone metastases in breast cancer patients. Clin Breast Cancer. 2011;11:369–75. https://doi.org/10.1016/j.clbc.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  65. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6. PubMed PMID: 11242036.

    Article  PubMed  Google Scholar 

  66. Correa D, Somoza RA, Lin P, Schiemann WP, Caplan AI. Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer. 2016;138:417–27. https://doi.org/10.1002/ijc.29709.

    Article  CAS  PubMed  Google Scholar 

  67. Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol. 2007;9:1000–4. PubMed PMID: 17762890.

    Article  CAS  PubMed  Google Scholar 

  68. Bellahcène A, Kroll M, Liebens F, Castronovo V. Bone sialoprotein expression in primary human breast cancer is associated with bone metastases development. J Bone Miner Res. 1996;11:665–70. https://doi.org/10.1002/jbmr.5650110514.

    Article  PubMed  Google Scholar 

  69. Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF, et al. Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res. 2004;10:184–90. PubMed PMID: 14734468.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang L, Hou X, Lu S, Rao H, Hou J, Luo R, Huang H, Zhao H, Jian H, Chen Z, Liao M, Wang X. Predictive significance of bone sialoprotein and osteopontin for bone metastases in resected Chinese non-small-cell lung cancer patients: a large cohort retrospective study. Lung Cancer. 2010;67:114–9.

    Google Scholar 

  71. Waltregny D, Bellahcène A, de Leval X, Florkin B, Weidle U, Castronovo V. Increased expression of bone sialoprotein in bone metastases compared with visceral metastases in human breast and prostate cancers. J Bone Miner Res. 2000;15:834–43. PubMed PMID: 10804012.

    Article  CAS  PubMed  Google Scholar 

  72. Bertoldo F, Silvestris F, Ibrahim T, Cognetti F, Generali D, Ripamonti CI, et al. Targeting bone metastatic cancer: role of the mTOR pathway. Biochim Biophys Acta. 2014;1845:248–54. https://doi.org/10.1016/j.bbcan.2014.01.009.

    Article  CAS  PubMed  Google Scholar 

  73. Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng XH, et al. TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res. 2011;71:175–84. https://doi.org/10.1158/0008-5472.CAN-10-2651. Erratum in: Cancer Res. 2011;71(5):2023. PubMed PMID: 21084275; PubMed Central PMCID: PMC3225124.

    Article  CAS  PubMed  Google Scholar 

  74. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103:197–206. PubMed PMID: 9916131; PubMed Central PMCID: PMC407876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10:1165–77. PubMed PMID: 14502240.

    Article  CAS  PubMed  Google Scholar 

  76. Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, et al. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 2004;35:1144–56. PubMed PMID: 15542040.

    Article  CAS  PubMed  Google Scholar 

  77. Mogi M, Kondo A. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells. Biochem Biophys Res Commun. 2009;384:82–6. https://doi.org/10.1016/j.bbrc.2009.04.084.

    Article  CAS  PubMed  Google Scholar 

  78. Moriceau G, Ory B, Mitrofan L, Riganti C, Blanchard F, Brion R, et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process. Cancer Res. 2010;70:10329–39. https://doi.org/10.1158/0008-5472.CAN-10-0578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen J, Long F. mTORC1 signaling promotes osteoblast differentiation from preosteoblasts. PLoS One. 2015;10(6):e0130627. https://doi.org/10.1371/journal.pone.0130627.eCollection.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ory B, Moriceau G, Redini F, Heymann D. mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: bi-functional compounds for the treatment of bone tumours. Curr Med Chem. 2007;14:1381–7. PubMed PMID: 17584050.

    Article  CAS  PubMed  Google Scholar 

  81. Jung K, Lein M. Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis. BBA. 2014;1846:425–38. https://doi.org/10.1016/j.bbcan.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  82. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26:97–122. PubMed PMID: 16648882; PubMed Central PMCID: PMC1320175.

    PubMed  PubMed Central  Google Scholar 

  83. Hlaing TT, Compston JE. Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem. 2014;51:189–202. https://doi.org/10.1177/0004563213515190.

    Article  PubMed  Google Scholar 

  84. de la Piedra C, Castro-Errecaborde NA, Traba ML, Méndez-Dávila C, García-Moreno C, Rodriguez de Acuña L, et al. Bone remodeling markers in the detection of bone metastases in prostate cancer. Clin Chim Acta. 2003;331:45–53. PubMed PMID: 12691863.

    Article  PubMed  Google Scholar 

  85. Galvano A, Scaturro D, Badalamenti G, et al. Denosumab for bone health in prostate and breast cancer patients receiving endocrine therapy? A systematic review and a meta-analysis of randomized trials. J Bone Oncol. 2019;18:100252. Published 2019 Jul 16. https://doi.org/10.1016/j.jbo.2019.100252.

  86. Garnero P, Vassy V, Bertholin A, Riou JP, Delmas PD. Markers of bone turnover in hyperthyroidism and the effects of treatment. J Clin Endocrinol Metab. 1994;78:955–9. PubMed PMID: 8157727.

    CAS  PubMed  Google Scholar 

  87. Coleman R, Costa L, Saad F, Cook R, Hadji P, Terpos E, et al. Consensus on the utility of bone markers in the malignant bone disease settin. Crit Rev Oncol Hematol. 2011;80:411–32. https://doi.org/10.1016/j.critrevonc.2011.02.005.

    Article  PubMed  Google Scholar 

  88. Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201. https://doi.org/10.1186/1479-5876-11-201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kyvernitakis I, Rachner TD, Urbschat A, Hars O, Hofbauer LC, Hadji P. Effect of aromatase inhibition on serum levels of sclerostin and dickkopf-1, bone turnover markers and bone mineral density in women with breast cancer. J Cancer Res Clin Oncol. 2014;140:1671–80. https://doi.org/10.1007/s00432-014-1726-z.

    Article  CAS  PubMed  Google Scholar 

  90. Anastasilakis AD, Polyzos SA, Gkiomisi A, Bisbinas I, Gerou S, Makras P. Comparative effect of zoledronic acid versus denosumab on serum sclerostin and dickkopf-1 levels of naive postmenopausal women with low bone mass: a randomized, head-to-head clinical trial. J Clin Endocrinol Metab. 2013;98:3206–12. https://doi.org/10.1210/jc.2013-1402.

    Article  CAS  PubMed  Google Scholar 

  91. Leto G, Incorvaia L, Flandina C, et al. Clinical impact of cystatin C/Cathepsin L and Follistatin/Activin a systems in breast cancer progression: a preliminary report. Cancer Invest. 2016;34(9):415–23. https://doi.org/10.1080/07357907.2016.1222416.

  92. Roelofs AJ, Thompson K, Gordon S, Rogers MJ. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12:6222s–30s.

    Google Scholar 

  93. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTPbinding proteins, including Ras. J Bone Miner Res. 1998;13:581–9.

    Article  CAS  PubMed  Google Scholar 

  94. van Beek E, Pieterman E, Cohen L, Löwik C, Papapoulos S. Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun. 1999;255:491–4. PubMed PMID: 10049736.

    Article  PubMed  Google Scholar 

  95. Mönkkönen H, Auriola S, Lehenkari P, Kellinsalmi M, Hassinen IE, Vepsäläinen J, et al. A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogencontaining bisphosphonates. Br J Pharmacol. 2006;147:437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Coleman R, Gnant M, Morgan G, Clezardin P. Effects of bone-targeted agents on cancer progression and mortality. J Natl Cancer Inst. 2012;104:1059–67. https://doi.org/10.1093/jnci/djs263.

    Article  CAS  PubMed  Google Scholar 

  97. Wong MH, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev. 2012;2:CD003474.

    Google Scholar 

  98. Body JJ. Rationale for the use of bisphosphonates in osteoblastic and osteolytic bone lesions. Breast. 2003;12:S37–44. PubMed PMID:14659142.

    Article  PubMed  Google Scholar 

  99. Heras P, Kritikos K, Hatzopoulos A, Georgopoulou AP. Efficacy of ibandronate for the treatment of skeletal events in patients with metastatic breast cancer. Eur J Cancer Care (Engl). 2009;18:653–6. https://doi.org/10.1111/j.1365-2354.2008.00980.x.

    Article  CAS  PubMed  Google Scholar 

  100. Kohno N, Aogi K, Minami H, Nakamura S, Asaga T, Iino Y, et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol. 2005;23(15):3314–21. PubMed PMID: 15738536.

    Article  CAS  PubMed  Google Scholar 

  101. Kristensen B, Ejlertsen B, Groenvold M, Hein S, Loft H, Mouridsen HT. Oral clodronate in breast cancer patients with bone metastases: a randomized study. J Intern Med. 1999;246:67–74. PubMed PMID: 10447227.

    Article  CAS  PubMed  Google Scholar 

  102. Lipton A. Bisphosphonates and breast carcinoma: present and future. Cancer. 2000;88:3033–7. PubMed PMID: 10898348.

    Article  CAS  PubMed  Google Scholar 

  103. Paterson AH, Powles TJ, Kanis JA, McCloskey E, Hanson J, Ashley S. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993;11:59–65. PubMed PMID: 8418243.

    Article  CAS  PubMed  Google Scholar 

  104. Tubiana-Hulin M, Beuzeboc P, Mauriac L, Barbet N, Frenay M, Monnier A, et al. Double-blinded controlled study comparing clodronate versus placebo in patients with breast cancer bone metastases. Bull Cancer. 2001;88:701–7. PubMed PMID: 11495824.

    CAS  PubMed  Google Scholar 

  105. Coleman R, Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386:1353–61. https://doi.org/10.1016/S0140-6736(15)60908-4.

    Article  Google Scholar 

  106. Hadji P, Coleman RE, Wilson C, Powles TJ, Clézardin P, Aapro M, et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel. Ann Oncol. 2016;27:379–90. https://doi.org/10.1093/annonc/mdv617.

    Article  CAS  PubMed  Google Scholar 

  107. Smith MR, Eastham J, Gleason DM, Shasha D, Tchekmedyian S, Zinner N. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol. 2003;169:2008–12. PubMed PMID: 12771706.

    Article  CAS  PubMed  Google Scholar 

  108. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94:1458–68.

    Article  CAS  PubMed  Google Scholar 

  109. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, et al. Long term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastic hormone refractory prostate carcinoma. J Natl Cancer. Inst. 2004;96:879–82.

    CAS  Google Scholar 

  110. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP. Spears MR, et al; STAMPEDE investigators. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77. https://doi.org/10.1016/S0140-6736(15)01037-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Smith MR, Halabi S, Ryan CJ, Hussain A, Vogelzang N, Stadler W, et al. Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol. 2014a;32:1143–50. https://doi.org/10.1200/JCO.2013.51.6500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martin M, Bell R, Bourgeois H, Brufsky A, Diel I, Eniu A, et al. Bone-related complications and quality of life in advanced breast cancer: results from a randomized phase III trial of denosumab versus zoledronic acid. Clin Cancer Res. 2012;18:4841–9. PubMed PMID: 22893628.

    Article  CAS  PubMed  Google Scholar 

  113. Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29:1125–32. https://doi.org/10.1200/JCO.2010.31.3304.

    Article  CAS  PubMed  Google Scholar 

  115. Lipton A, Fizazi K, Stopeck AT, Henry DH, Smith MR, Shore N, et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur J Cancer. 2016;53:75–83. https://doi.org/10.1016/j.ejca.2015.09.011.

    Article  CAS  PubMed  Google Scholar 

  116. Coleman R, Body JJ, Aapro M, Hadji P, Herrstedt J, ESMO Guidelines Working Group. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2014;25(Suppl 3):iii124–37. https://doi.org/10.1093/annonc/mdu103.

    Article  PubMed  Google Scholar 

  117. Gralow JR, Biermann JS, Farooki A, Fornier MN, Gagel RF, Kumar R, et al. NCCN task force report: bone health in cancer care. J Natl Compr Cancer Netw. 2013;11(Suppl 3):S1–50. PubMed PMID: 23997241.

    Article  Google Scholar 

  118. Van Poznak CH, Temin S, Yee GC, Janjan NA, Barlow WE, Biermann JS, et al. American Society of Clinical Oncology. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol. 2011;29(9):1221–7. https://doi.org/10.1200/JCO.2010.32.5209. Erratum in: J Clin Oncol. 2011 Jun 1;29(16):2293. PubMed PMID: 21343561.

    Article  CAS  PubMed  Google Scholar 

  119. Agarawal JP, Swangsilpa T, van der Linden Y, Rades D, Jeremic B, Hoskin PJ. The role of external beam radiotherapy in the management of bone metastases. Clin Oncol (R Coll Radiol). 2006;18:747–60.

    Article  CAS  PubMed  Google Scholar 

  120. Lutz S, Chow E. A review of recently published radiotherapy treatment guidelines for bone metastases: contrasts or convergence? J Bone Oncol. 2012;1:18–23.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Roqué I, Figuls M, Martinez-Zapata MJ, Scott-Brown M, Alonso-Coello P. Radioisotopes for metastatic bone pain. Cochrane Database Syst Rev. 2011;(7):CD003347.

    Google Scholar 

  122. Sartor O, Reid RH, Bushnell DL, Quick DP, Ell PJ. Safety and efficacy of repeat administration of samarium Sm-153 lexidronam to patients with metastatic bone pain. Cancer. 2007;109:637–43.

    Article  CAS  PubMed  Google Scholar 

  123. Silberstein EB. Dosage and response in radiopharmaceutical therapy of painful osseous metastases. J Nucl Med. 1996;37:249–52.

    CAS  PubMed  Google Scholar 

  124. Allen BJ. Clinical trials of targeted alpha therapy for cancer. Rev Recent Clin Trials. 2008;3:185–91.

    Article  CAS  PubMed  Google Scholar 

  125. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  126. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.

    Article  CAS  PubMed  Google Scholar 

  127. Gnant M, Baselga J, Rugo HS, Noguchi S, Burris HA, Piccart M, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2. J Natl Cancer Inst. 2013;105:654–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13:983–92.

    Article  CAS  PubMed  Google Scholar 

  129. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.

    Article  CAS  PubMed  Google Scholar 

  130. O’Donnell A, Judson I, Dowsett M, Raynaud F, Dearnaley D, Mason M, Harland S, et al. Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer. 2004;90:2317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Barrie SE, Potter GA, Goddard PM, Haynes BP, Dowsett M, Jarman M. Pharmacology of novel steroidal inhibitors of cytochrome P450(17) alpha (17 alpha-hydroxylase/C17-20 lyase). J Steroid Biochem Mol Biol. 1994;50:267–73.

    Article  CAS  PubMed  Google Scholar 

  132. Attard G, Reid AH, Auchus RJ, Hughes BA, Cassidy AM, Thompson E, et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J Clin Endocrinol Metab. 2012;97:507–16.

    Article  CAS  PubMed  Google Scholar 

  133. Iuliani M, Pantano F, Buttigliero C, Fioramonti M, Bertaglia V, Vincenzi B, et al. Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget. 2015;6(14):12520–8.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, PREVAIL Investigators, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33. https://doi.org/10.1056/NEJMoa1405095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, AFFIRM Investigators, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97. PubMed PMID: 22894553.

    Article  CAS  PubMed  Google Scholar 

  136. Tsai SY, Huang YL, Yang WH, Tang CH. Hepatocyte growth factor-induced BMP-2 expression is mediated by c-Met receptor, FAK, JNK, Runx2, and p300 pathways in human osteoblasts. Int Immunopharmacol. 2012;13:156–62. https://doi.org/10.1016/j.intimp.2012.03.026.

    Article  CAS  PubMed  Google Scholar 

  137. Taichman R, Reilly M, Verma R, Ehrenman K, Emerson S. Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol. 2001;112:438–48.

    Article  CAS  PubMed  Google Scholar 

  138. Sonnenberg E, Meyer D, Weidner KM, Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993;123:223–35.

    Article  CAS  PubMed  Google Scholar 

  139. Takai K, Hara J, Matsumoto K, Hosoi G, Osugi Y, Tawa A, et al. Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood. 1997;89:1560–5.

    Article  CAS  PubMed  Google Scholar 

  140. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308. https://doi.org/10.1158/1535-7163.mct-11-0264.

    Article  CAS  PubMed  Google Scholar 

  141. Grano M, Galimi F, Zambonin G, Colucci S, Cottone E, Zallone AZ, et al. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci U S A. 1996;93:7644–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology. 2000;141:1667–74. https://doi.org/10.1210/endo.141.5.7458.

    Article  CAS  PubMed  Google Scholar 

  143. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8. https://doi.org/10.1038/9467.

    Article  CAS  PubMed  Google Scholar 

  144. Graham TJ, Box G, Tunariu N, Crespo M, Spinks TJ, Miranda S, et al. Preclinical evaluation of imaging biomarkers for prostate cancer bone metastasis and response to cabozantinib. J Natl Cancer Inst. 2014;106:dju033. https://doi.org/10.1093/jnci/dju033.

    Article  CAS  PubMed  Google Scholar 

  145. Nguyen HM, Ruppender N, Zhang X, Brown LG, Gross TS, Morrissey C, et al. Cabozantinib inhibits growth of androgen-sensitive and castration-resistant prostate cancer and affects bone remodeling. PLoS One. 2013;8:e78881. https://doi.org/10.1371/journal.pone.0078881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dai J, Zhang H, Karatsinides A, Keller JM, Kozloff KM, Aftab DT, et al. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clin Cancer Res. 2014;20:617–30. https://doi.org/10.1158/1078-0432.ccr-13-0839.

    Article  CAS  PubMed  Google Scholar 

  147. Fioramonti M, Santini D, Iuliani M, Ribelli G, Manca P, Papapietro N, et al. Cabozantinib targets bone microenvironment modulating human osteoclast and osteoblast functions. Oncotarget. 2017;8(12):20113–21. https://doi.org/10.18632/oncotarget.15390.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31:412–9. https://doi.org/10.1200/jco.2012.45.0494.

    Article  CAS  PubMed  Google Scholar 

  149. Smith MR, Sweeney CJ, Corn PG, Rathkopf DE, Smith DC, Hussain M, et al. Cabozantinib in chemotherapy-pretreated metastatic castration-resistant prostate cancer: results of a phase II nonrandomized expansion study. J Clin Oncol. 2014b;32:3391–9. https://doi.org/10.1200/jco.2013.54.5954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol. 2016;34:3005–13. https://doi.org/10.1200/jco.2015.65.5597.

    Article  CAS  PubMed  Google Scholar 

  151. Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1814–23. https://doi.org/10.1056/NEJMoa1510016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Santini D, Tonini G. Treatment of advanced renal-cell carcinoma. N Engl J Med. 2016;374:888–9. https://doi.org/10.1056/NEJMc1515613#SA2.

    Article  PubMed  Google Scholar 

  153. Motzer RJ, Escudier B, Choueiri TK. Treatment of advanced renal-cell carcinoma. N Engl J Med. 2016;374:889–90. https://doi.org/10.1056/NEJMc1515613.

    Article  PubMed  Google Scholar 

  154. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Google Scholar 

  155. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117:1137–46.

    Google Scholar 

  156. Danilin S, Merkel AR, Johnson JR, Johnson RW, Edwards JR, Sterling JA. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology. 2012;1:1484–1494.

    Google Scholar 

  157. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Google Scholar 

  158. Sawant A, Ponnazhagan S. Myeloid-derived suppressor cells as osteoclast progenitors: a novel target for controlling osteolytic bone metastasis. Cancer Res. 2013;73:4606–10.

    Google Scholar 

  159. Buenrostro D, Park SI, Sterling JA. Dissecting the role of bone marrow stromal cells on bone metastases. Biomed Res Int. 2014;2014:875305.

    Google Scholar 

  160. Sinder BP, Pettit AR, McCauley LK. Macrophages: Their Emerging Roles in Bone. J Bone Miner Res. 2015;30:2140–9.

    Google Scholar 

  161. Loriot Y, Miller K, Sternberg CN, Fizazi K, De Bono JS, Chowdhury S, et al. Effect of enzalutamide on health-related quality of life, pain, and skeletal-related events in asymptomatic and minimally symptomatic, chemotherapy-naive patients with metastatic castration-resistant prostate cancer (PREVAIL): results from a randomised, phase 3 trial. Lancet Oncol. 2015;16:509–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Santini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santini, D., Ribelli, G., Simonetti, S., Iuliani, M., Pantano, F., Tonini, G. (2021). Bone Health in Cancer Patients. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics