Skip to main content

Advertisement

Log in

Selective protein depletion impairs bone growth and causes liver fatty infiltration in female rats: prevention by Spirulina alga

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Chronic protein malnutrition leads to child mortality in developing countries. Spirulina alga (Spi), being rich in protein and growing easily, is a good candidate as supplementation. We showed that Spi completely prevents bone growth retardation and liver disturbances observed in young rats fed a low protein diet. This supports Spi as a useful source of vegetable protein to fight against protein malnutrition.

Introduction

Chronic malnutrition is a main factor of child mortality in developing countries. A low protein diet impairs whole-body growth and leads to fatty liver in growing rats. Spi has great potential as a supplementation as it has a 60 % protein content and all essential amino acids. However, its specific impact on bone growth and the related secretion of hepatokines have not yet been studied.

Methods

To address this question, 6-week-old female rats were fed isocaloric diets containing 10 % casein, 5 % casein, or 5 % casein + 5 % protein from Spi during 9 weeks. Changes in tibia geometry, microarchitecture, BMC, BMD, and biomechanical properties were analyzed. Serum IGF-I, FGF21, follistatin, and activin A were assessed as well as their hepatic gene expressions in addition to those of Sirt1, Ghr, and Igf1r. Hepatic fat content was also assessed.

Results

A low protein diet altered bone geometry and reduced proximal tibia BMD and trabecular bone volume. In addition, it increased hepatic fat content and led to hepatic GH resistance by decreasing serum IGF-I and increasing serum FGF21 without altering serum activin A and follistatin. Spi prevented low protein diet-induced bone, hepatic, and hormonal changes, and even led to higher biomechanical properties and lower hepatic fat content in association with specific InhbA and Follistatin expression changes vs. the 10 % casein group.

Conclusions

Altogether our results demonstrate the preventive impact of Spi on bone growth delay and hepatic GH resistance in conditions of isocaloric dietary protein deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muller O, Krawinkel M (2005) Malnutrition and health in developing countries. CMAJ 173:279–286

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schonfeldt HC, Gibson Hall N (2012) Dietary protein quality and malnutrition in Africa. Br J Nutr 108(Suppl 2):S69–76

    Article  PubMed  Google Scholar 

  3. Yahya ZA, Millward DJ, Yayha ZA (1994) Dietary protein and the regulation of long-bone and muscle growth in the rat. Clin Sci (Lond) 87:213–224

    Article  CAS  Google Scholar 

  4. Van Duzen J, Carter JP, Zwagg RV (1976) Protein and calorie malnutrition among preschool Navajo Indian children, a follow-up. Am J Clin Nutr 29:657–662

    PubMed  Google Scholar 

  5. Kwon DH, Kang W, Nam YS, Lee MS, Lee IY, Kim HJ, Rajasekar P, Lee JH, Baik M (2012) Dietary protein restriction induces steatohepatitis and alters leptin/signal transducers and activators of transcription 3 signaling in lactating rats. J Nutr Biochem 23:791–799

    Article  CAS  PubMed  Google Scholar 

  6. Frenk S, Gomez F, Ramos-Galvan R, Cravioto J (1958) Fatty liver in children; kwashiorkor. Am J Clin Nutr 6:298–309

    CAS  PubMed  Google Scholar 

  7. Fournier C, Rizzoli R, Ammann P (2014) Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats. Endocrinology 155(11):4305–4315

  8. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res 23:131–142

    Article  CAS  PubMed  Google Scholar 

  9. Fliesen T, Maiter D, Gerard G, Underwood LE, Maes M, Ketelslegers JM (1989) Reduction of serum insulin-like growth factor-I by dietary protein restriction is age dependent. Pediatr Res 26:415–419

    Article  CAS  PubMed  Google Scholar 

  10. De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443:165–171

    Article  PubMed  Google Scholar 

  11. Laeger T, Henagan TM, Albarado DC et al (2014) FGF21 is an endocrine signal of protein restriction. J Clin Invest 124:3913–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8:77–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei W, Dutchak PA, Wang X et al (2012) Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 109:3143–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kubicky RA, Wu S, Kharitonenkov A, De Luca F (2012) Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. Endocrinology 153:2287–2295

    Article  CAS  PubMed  Google Scholar 

  15. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P (2011) Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 152:164–171

    Article  CAS  PubMed  Google Scholar 

  16. Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21:626–636

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Nishida S, Sakata T, Elalieh HZ, Chang W, Halloran BP, Doty SB, Bikle DD (2006) Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology 147:4753–4761

    Article  CAS  PubMed  Google Scholar 

  18. Wu S, Levenson A, Kharitonenkov A, De Luca F (2012) Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 287:26060–26067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eijken M, Swagemakers S, Koedam M et al (2007) The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. FASEB J 21:2949–2960

    Article  PubMed  Google Scholar 

  20. Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML, Maratos-Flier E (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arturi F, Succurro E, Procopio C et al (2011) Nonalcoholic fatty liver disease is associated with low circulating levels of insulin-like growth factor-I. J Clin Endocrinol Metab 96:E1640–1644

    Article  CAS  PubMed  Google Scholar 

  22. Yndestad A, Haukeland JW, Dahl TB et al (2009) A complex role of activin A in non-alcoholic fatty liver disease. Am J Gastroenterol 104:2196–2205

    Article  CAS  PubMed  Google Scholar 

  23. Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5(8):1669–1685

  25. Roman GC (2013) Nutritional disorders in tropical neurology. Handb Clin Neurol 114:381–404

    Article  PubMed  Google Scholar 

  26. Maranesi M, Barzanti V, Carenini G, Gentili P (1984) Nutritional studies on Spirulina maxima. Acta Vitaminol Enzymol 6:295–304

    CAS  PubMed  Google Scholar 

  27. Tranquille N, Emeis JJ, de Chambure D, Binot R, Tamponnet C (1994) Spirulina acceptability trials in rats. A study for the “MELISSA” life-support system. Adv Space Res 14:167–170

    Article  CAS  PubMed  Google Scholar 

  28. Salazar M, Chamorro GA, Salazar S, Steele CE (1996) Effect of Spirulina maxima consumption on reproduction and peri- and postnatal development in rats. Food Chem Toxicol 34:353–359

    Article  CAS  PubMed  Google Scholar 

  29. Voltarelli FA, de Mello MA (2008) Spirulina enhanced the skeletal muscle protein in growing rats. Eur J Nutr 47:393–400

    Article  CAS  PubMed  Google Scholar 

  30. Simpore J, Kabore F, Zongo F, Dansou D, Bere A, Pignatelli S, Biondi DM, Ruberto G, Musumeci S (2006) Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutr J 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Azabji-Kenfack M, Dikosso SE, Loni EG et al (2011) Potential of Spirulina platensis as a nutritional supplement in malnourished HIV-infected adults in sub-Saharan Africa: a randomised, single-blind study. Nutr Metab Insights 4:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moura LP, Puga GM, Beck WR, Teixeira IP, Ghezzi AC, Silva GA, Mello MA (2011) Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis 10:77

    Article  PubMed  PubMed Central  Google Scholar 

  33. Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rugsegger P (2000) 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 38:326–332

    Article  CAS  PubMed  Google Scholar 

  34. Jiang SD, Shen C, Jiang LS, Dai LY (2007) Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos Int 18:743–750

    Article  PubMed  Google Scholar 

  35. Ju YI, Sone T, Okamoto T, Fukunaga M (2008) Jump exercise during remobilization restores integrity of the trabecular architecture after tail suspension in young rats. J Appl Physiol 104:1594–1600

    Article  PubMed  Google Scholar 

  36. Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883

    Article  CAS  PubMed  Google Scholar 

  37. Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980

    Article  CAS  PubMed  Google Scholar 

  38. Dubois-Ferriere V, Brennan TC, Dayer R, Rizzoli R, Ammann P (2011) Calcitropic hormones and IGF-I are influenced by dietary protein. Endocrinology 152:1839–1847

    Article  CAS  PubMed  Google Scholar 

  39. Fujimoto M, Tsuneyama K, Fujimoto T, Selmi C, Gershwin ME, Shimada Y (2012) Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Dig Liver Dis 44:767–774

    Article  CAS  PubMed  Google Scholar 

  40. Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ, Kopchick JJ, Le Roith D, Trucco M, Sperling MA (2009) Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Biol Chem 284:19937–19944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fazeli PK, Klibanski A (2014) Determinants of GH resistance in malnutrition. J Endocrinol 220:R57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sos BC, Harris C, Nordstrom SM, Tran JL, Balazs M, Caplazi P, Febbraio M, Applegate MA, Wagner KU, Weiss EJ (2011) Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J Clin Invest 121:1412–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kreidl E, Ozturk D, Metzner T, Berger W, Grusch M (2009) Activins and follistatins: emerging roles in liver physiology and cancer. World J Hepatol 1:17–27

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guasti L, Silvennoinen S, Bulstrode NW, Ferretti P, Sankilampi U, Dunkel L (2014) Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants through GH resistance in chondrocytes. J Clin Endocrinol Metab 99:E2198–2206

    Article  CAS  PubMed  Google Scholar 

  46. Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, Savvides M, Papatheodorou A, Terpos E (2013) Circulating activin-A is elevated in postmenopausal women with low bone mass: the three-month effect of zoledronic acid treatment. Osteoporos Int 24:2127–2132

    Article  CAS  PubMed  Google Scholar 

  47. Brennan-Speranza TC, Rizzoli R, Kream BE, Rosen C, Ammann P (2011) Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties. Bone 49:1073–1079

    Article  CAS  PubMed  Google Scholar 

  48. Garrett WS (2013) Kwashiorkor and the gut microbiota. N Engl J Med 368:1746–1747

    Article  CAS  PubMed  Google Scholar 

  49. Gordon JI, Dewey KG, Mills DA, Medzhitov RM (2012) The human gut microbiota and undernutrition. Sci Transl Med 4:137, ps112

    Article  Google Scholar 

  50. Ohlsson C, Sjogren K (2015) Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26:69–74

    Article  CAS  PubMed  Google Scholar 

  51. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deng R, Chow TJ (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 28:e33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. S. Clément for her expert technical assistance with animals and biochemical measurements, and Mrs I. Badoud for her expert technical assistance with biomechanical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ammann.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

ESM 2

Supplementary Fig. 1 Binary images created with ImageJ software representing the Oil red O staining of images in Fig. 3. (PPTX 114 kb)

ESM 3

(DOCX 13 kb)

ESM 4

(DOCX 16 kb)

ESM 5

Supplementary Fig. 2 Representative MicroCT images (3D) of the proximal tibia metaphysis for Con10, Con5, and Con5 + Spi5 groups. Scale bar: 1 mm. (PPTX 150 kb)

ESM 6

(DOCX 13 kb)

ESM 7

(DOCX 12 kb)

ESM 8

Supplementary Fig. 3 Correlations between the Ghr hepatic gene expression and serum FGF21 (A) or average size of hepatic lipid droplets (B) by using Pearson correlation tests. All the groups were used for these analyses. p < 0.05 was considered as statistically significant. (PPTX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournier, C., Rizzoli, R., Bouzakri, K. et al. Selective protein depletion impairs bone growth and causes liver fatty infiltration in female rats: prevention by Spirulina alga. Osteoporos Int 27, 3365–3376 (2016). https://doi.org/10.1007/s00198-016-3666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3666-8

Keywords

Navigation