Skip to main content

Advertisement

Log in

Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Both spinal cord injury and ovariectomy can result in ostepenia in rats. SCI induces more deterioration of cortical geometric structure and trabecular microstructure in the proximal tibial metaphysis than OVX. The proximal tibial metaphysis microstructure significantly correlates with its biomechanical properties.

Introduction

The purpose of the present study was to compare the effects of spinal cord injury (SCI) and ovariectomy (OVX) on bone gain in young female rats.

Methods

Thirty young female Sprague-Dawley rats were randomized into three groups: age-matched intact control (CON), OVX and SCI. The tibiae were assessed for DXA and micro-CT analysis, biomechanical testing, the upper tibial epiphyseal plate height, and blood samples for biochemical analysis.

Results

SCI rats showed lower aBMD in the proximal tibiae as compared with OVX rats. Cortical geometric structural parameters of the tibial midshaft in SCI rats were significantly lower than OVX rats. SCI or OVX induced significant changes in all trabecular microstructural parameters in the proximal tibial metaphysis. The trabecular separation (Tb.Sp) and structure mode index (SMI) in SCI rats were significantly higher than in OVX rats. BV/TV explained 84% of the variation of ultimate load of the proximal tibial metaphysis. There was no difference of the upper tibial epiphyseal plate height between SCI and OVX rats. Serum NTX level in SCI rats was significantly higher than in OVX rats.

Conclusions

SCI induces more deterioration of cortical bone geometric structure and trabecular microstructure in the proximal tibial metaphysis than OVX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aitken JM, Armstrong E, Anderson JB (1972) Osteoporosis after oophorectomy in the mature female rat and the effect of oestrogen and-or progestogen replacement therapy in its prevention. J Endocrinol 55(1):79–87

    Article  PubMed  CAS  Google Scholar 

  2. Kalu DN (1984) Evaluation of the pathogenesis of skeletal changes in ovariectomized rats. Endocrinology 115(2):507–512

    PubMed  CAS  Google Scholar 

  3. Lindgren JU, Lindholm TS (1979) Effect of 1-alpha-hydroxyvitamin D3 on osteoporosis in rats induced by oophorectomy. Calcif Tissue Int 27(2):161–164

    Article  PubMed  CAS  Google Scholar 

  4. Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2(2):115–122

    PubMed  CAS  Google Scholar 

  5. Surve VV, Andersson N, Lehto-Axtelius D, Hakanson R (2001) Comparison of osteopenia after gastrectomy, ovariectomy and prednisolone treatment in the young female rat. Acta Orthop Scand 72(5):525–532

    Article  PubMed  CAS  Google Scholar 

  6. Turner RT, Wakley GK, Hannon KS, Bell NH (1988) Tamoxifen inhibits osteoclast-mediated resorption of trabecular bone in ovarian hormone-deficient rats. Endocrinology 122(3):1146–1150

    Article  PubMed  CAS  Google Scholar 

  7. Turner RT, Wakley GK, Hannon KS, Bell NH (1987) Tamoxifen prevents the skeletal effects of ovarian hormone deficiency in rats. J Bone Miner Res 2(5):449–456

    PubMed  CAS  Google Scholar 

  8. Perkins R, Skirving AP (1987) Callus formation and the rate of healing of femoral fractures in patients with head injuries. J Bone Joint Surg Br 69(4):521–524

    PubMed  CAS  Google Scholar 

  9. Lundberg P, Lie A, Bjurholm A, Lehenkari PP, Horton MA, Lerner UH, Ransjo M (2000) Vasoactive intestinal peptide regulates osteoclast activity via specific binding sites on both osteoclasts and osteoblasts. Bone 27(6):803–810

    Article  PubMed  CAS  Google Scholar 

  10. Bliziotes MM, Eshleman AJ, Zhang XW, Wiren KM (2001) Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone 29(5):477–486

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1998) Catecholamines stimulate the proliferation and alkaline phosphatase activity of MC3T3-E1 osteoblast-like cells. Bone 23(3):197–203

    Article  PubMed  CAS  Google Scholar 

  12. Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD (1998) Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 22(4):295–299

    Article  PubMed  CAS  Google Scholar 

  13. Burt-Pichat B, Lafage-Proust MH, Duboeuf F, Laroche N, Itzstein C, Vico L, Delmas PD, Chenu C (2005) Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology 146(1):503–510

    Article  PubMed  CAS  Google Scholar 

  14. Hill EL, Martin RB, Gunther E, Morey-Holton E, Holets VR (1993) Changes in bone in a model of spinal cord injury. J Orthop Res 11(4):537–547

    Article  PubMed  CAS  Google Scholar 

  15. Jiang SD, Jiang LS, Dai LY (2006) Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos Int 17(10):1552–1561

    Article  PubMed  Google Scholar 

  16. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198

    Article  PubMed  CAS  Google Scholar 

  17. Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19(10):1640–1650

    Article  PubMed  Google Scholar 

  18. Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  19. Hildebrand T, Ruegsegger P (1997) Quantification of Bone Microarchitecture with the Structure Model Index. Comput Methods Biomech Biomed Engin 1(1):15–23

    PubMed  Google Scholar 

  20. Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14(2):173–182

    Article  PubMed  CAS  Google Scholar 

  21. Kasukawa Y, Miyakoshi N, Itoi E, Tsuchida T, Tamura Y, Kudo T, Suzuki K, Seki A, Sato K (2004) Effects of h-PTH on cancellous bone mass, connectivity, and bone strength in ovariectomized rats with and without sciatic-neurectomy. J Orthop Res 22(3):457–464

    Article  PubMed  CAS  Google Scholar 

  22. Smith CB, Smith DA (1976) Relations between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47(5):496–502

    Article  PubMed  CAS  Google Scholar 

  23. Enlow DH (1962) A study of the post-natal growth and remodeling of bone. Am J Anat 110:79–101

    Article  PubMed  CAS  Google Scholar 

  24. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8(10):1211–1217

    PubMed  CAS  Google Scholar 

  25. Boonen S, Koutri R, Dequeker J, Aerssens J, Lowet G, Nijs J, Verbeke G, Lesaffre E, Geusens P (1995) Measurement of femoral geometry in type I and type II osteoporosis: differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures. J Bone Miner Res 10(12):1908–1912

    PubMed  CAS  Google Scholar 

  26. Genant HK, Gluer CC, Lotz JC (1994) Gender differences in bone density, skeletal geometry, and fracture biomechanics. Radiology 190(3):636–640

    PubMed  CAS  Google Scholar 

  27. Bagi CM, Hanson N, Andresen C, Pero R, Lariviere R, Turner CH, Laib A (2006) The use of micro-CT to evaluate cortical bone geometry and strength in nude rats: correlation with mechanical testing, pQCT and DXA. Bone 38(1):136–144

    Article  PubMed  Google Scholar 

  28. Geusens P, Boonen S, Nijs J, Jiang Y, Lowet G, Van Auderkercke R, Huyghe C, Caulin F, Very JM, Dequeker J, Van der Perre G (1996) Effect of salmon calcitonin on femoral bone quality in adult ovariectomized ewes. Calcif Tissue Int 59(4):315–320

    Article  PubMed  CAS  Google Scholar 

  29. Takagi Y, Fujii Y, Miyauchi A, Goto B, Takahashi K, Fujita T (1995) Transmenopausal change of trabecular bone density and structural pattern assessed by peripheral quantitative computed tomography in Japanese women. J Bone Miner Res 10(11):1830–1834

    Article  PubMed  CAS  Google Scholar 

  30. Chesnut CH, 3rd, Majumdar S, Newitt DC, Shields A, Van Pelt J, Laschansky E, Azria M, Kriegman A, Olson M, Eriksen EF, Mindeholm L (2005) Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res 20(9):1548–1561

    Article  PubMed  CAS  Google Scholar 

  31. Slade JM, Bickel CS, Modlesky CM, Majumdar S, Dudley GA (2005) Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 16(3):263–272

    Article  PubMed  Google Scholar 

  32. Modlesky CM, Majumdar S, Narasimhan A, Dudley GA (2004) Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 19(1):48–55

    Article  PubMed  Google Scholar 

  33. Hudelmaier M, Kollstedt A, Lochmuller EM, Kuhn V, Eckstein F, Link TM (2005) Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence. Osteoporos Int 16(9):1124–1133

    Article  PubMed  Google Scholar 

  34. Shiraishi A, Higashi S, Masaki T, Saito M, Ito M, Ikeda S, Nakamura T (2002) A comparison of alfacalcidol and menatetrenone for the treatment of bone loss in an ovariectomized rat model of osteoporosis. Calcif Tissue Int 71(1):69–79

    Article  PubMed  CAS  Google Scholar 

  35. Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K (2002) Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone 30(4):594–598

    Article  PubMed  CAS  Google Scholar 

  36. Nishida A, Ito M, Uetani M, Nakayama T, Tanaka T (2004) Effect of etidronate on three-dimensional trabecular structure in ovariectomized or sciatic neurectomized rats. J Bone Miner Metab 22(4):335–340

    Article  PubMed  CAS  Google Scholar 

  37. Wronski TJ, Cintron M, Dann LM (1988) Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43(3):179–183

    Article  PubMed  CAS  Google Scholar 

  38. Nilas L, Christiansen C (1988) Rates of bone loss in normal women: evidence of accelerated trabecular bone loss after the menopause. Eur J Clin Invest 18(5):529–534

    Article  PubMed  CAS  Google Scholar 

  39. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12(1):111–118

    Article  PubMed  CAS  Google Scholar 

  40. Muller R, Hahn M, Vogel M, Delling G, Ruegsegger P (1996) Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 18(3):215–220

    Article  PubMed  CAS  Google Scholar 

  41. Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27(1):1–11

    Article  PubMed  Google Scholar 

  42. Keaveny TM, Hayes WC (1993) A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115(4B):534–542

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-Y. Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, SD., Shen, C., Jiang, LS. et al. Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos Int 18, 743–750 (2007). https://doi.org/10.1007/s00198-006-0299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0299-3

Keywords

Navigation