Skip to main content

Advertisement

Log in

Fracture incidence in a large cohort of men age 30 years and older with osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In this large retrospective study of men with presumed osteoporosis, we estimate the rate of osteoporosis-related fractures in men age ≥30 years. Our results suggest that spine and hip fractures continue to be a considerable disease burden for osteoporotic men of all ages.

Introduction

The purposes of this study were to describe a cohort of men with presumed osteoporosis and estimate the incidence rates of fractures by age.

Methods

Using US administrative claims data, we identified 43,813 men ≥30 years old with an osteoporosis diagnosis or use of an osteoporosis medication. Men were followed for a minimum of 12 months after diagnosis or treatment of osteoporosis (index date), until the earliest of fracture (hip, spine, pelvis, distal femur, humerus, wrist, forearm), disenrollment, or study end date.

Results

During the study period, there were 3834 first fractures following the index date and 3303 fractures in the 6-month period prior to the diagnosis/treatment of osteoporosis. Incidence rates of osteoporosis-related fracture, estimated from the index date onward, increased with age, although did not significantly differ from one another in younger age groups (30–49 and 50–64 years). Spine fractures had the highest incidence rate in men across all age groups, increasing from 10.8 per 100,000 person-years (p-yrs) (95 % confidence interval (CI) 9.1, 12.7), 12.2 per 100,000 p-yrs (95 % CI 11.2, 13.3), and 15.3 per 100,000 p-yrs (95 % CI 13.8, 16.9) in men 30–49, 50–64, and 65–74 years to 33.4 per 100,000 p-yrs (95 % CI 31.5, 35.4) in men ≥75 years. Hip fractures were the second most common, with the incidence rate reaching 16.2 per 100,000 (95 % CI 14.9, 17.6) in the ≥75-year group.

Conclusion

These incidence rates suggest that spine and hip fractures are a considerable disease burden for men of all ages diagnosed and/or treated for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Consensus Development Statement (1997) Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int 7(1):1–6

    Article  Google Scholar 

  2. Curtis JR, Adachi JD, Saag KG (2009) Bridging the osteoporosis quality chasm. J Bone Miner Res 24(1):3–7

    Article  PubMed  Google Scholar 

  3. Gruntmanis U (2007) Male osteoporosis: deadly, but ignored. Am J Med Sci 333(2):85–92, Review

    Article  PubMed  Google Scholar 

  4. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733

    Article  CAS  PubMed  Google Scholar 

  5. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(2):S3–S7, Review

    Article  PubMed  Google Scholar 

  6. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301(5):513–521

    Article  CAS  PubMed  Google Scholar 

  7. Haentjens P, Magaziner J, Colón-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B, Boonen S (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390

    Article  PubMed Central  PubMed  Google Scholar 

  8. Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. JAMA 302(14):1573–1579

    Article  CAS  PubMed  Google Scholar 

  9. Aharonoff GB, Koval KJ, Skovron ML, Zuckerman JD (1997) Hip fractures in the elderly: predictors of one year mortality. J Orthop Trauma 11(3):162–165

    Article  CAS  PubMed  Google Scholar 

  10. Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R (2012) Men recover ability to function less than women do: an observational study of 1094 subjects after hip fracture. Am J Phys Med Rehabil 91(4):309–315

    Article  PubMed  Google Scholar 

  11. Seeman E, Bianchi G, Khosla S, Kanis JA, Orwoll E (2006) Bone fragility in men—where are we? Osteoporos Int 17(11):1577–1583

    Article  CAS  PubMed  Google Scholar 

  12. Larijani B, Hossein-Nezhad A, Mojtahedi A, Pajouhi M, Bastanhagh MH, Soltani A, Mirfezi SZ, Dashti R (2005) Normative data of bone mineral density in healthy population of Tehran, Iran: a cross sectional study. BMC Musculoskelet Disord 2:6–38

    Google Scholar 

  13. Lynn HS, Lau EM, Au B, Leung PC (2005) Bone mineral density reference norms for Hong Kong Chinese. Osteoporos Int 16(12):1663–1668

    Article  CAS  PubMed  Google Scholar 

  14. Pérez-Castrillón JL, Martín-Escudero JC, del Pino-Montes J, Blanco FS, Martín FJ, Paredes MG, Fernández FP, Arés TA (2005) Prevalence of osteoporosis using DXA bone mineral density measurements at the calcaneus: cut-off points of diagnosis and exclusion of osteoporosis. J Clin Densitom 8(4):404–408

    Article  PubMed  Google Scholar 

  15. Richy F, Gourlay ML, Garrett J, Hanson L, Reginster JY (2004) Osteoporosis prevalence in men varies by the normative reference. J Clin Densitom 7(2):127–133

    Article  PubMed  Google Scholar 

  16. Melton LJ 3rd, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13(12):1915–1923

    Article  PubMed  Google Scholar 

  17. Schneeweiss S, Avorn J (2005) A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol 58:323–337

    Article  PubMed  Google Scholar 

  18. MarketScan® Research Databases User Guide and Database Dictionary Commercial Claims and Encounters (2007) Medicare Supplemental and Coordination of Benefits. Data Year Edition

  19. Adamson DM, Chang S, Hansen LG (2008) Health research data for the real world: the Marketscan databases. Thompson Healthcare, New York

    Google Scholar 

  20. Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 45:613–619

    Article  CAS  PubMed  Google Scholar 

  21. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202

    Article  CAS  PubMed  Google Scholar 

  22. Melton LJ 3rd, Crowson CS, O'Fallon WM (1999) Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int 9(1):29–37

    Article  PubMed  Google Scholar 

  23. Freitas SS, Barrett-Connor E, Ensrud KE, Fink HA, Bauer DC, Cawthon PM, Lambert LC, Orwoll ES, Osteoporotic Fractures in Men (MrOS) Research Group (2008) Rate and circumstances of clinical vertebral fractures in older men. Osteoporos Int 19(5):615–623

    Article  CAS  PubMed  Google Scholar 

  24. Sanders KM, Seeman E, Ugoni AM, Pasco JA, Martin TJ, Skoric B, Nicholson GC, Kotowicz MA (1999) Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 10(3):240–247

    Article  CAS  PubMed  Google Scholar 

  25. Singer BR, McLauchlan GJ, Robinson CM, Christie J (1998) Epidemiology of fractures in 15,000 adults: the influence of age and gender. J Bone Jt Surg Br 80(2):243–248

    Article  CAS  Google Scholar 

  26. Cooper C, O'Neill T, Silman A (1993) The epidemiology of vertebral fractures. European Vertebral Osteoporosis Study Group. Bone 14(1):S89–S97, Review

    Article  PubMed  Google Scholar 

  27. Mackey DC, Lui LY, Cawthon PM, Bauer DC, Nevitt MC, Cauley JA, Hillier TA, Lewis CE, Barrett-Connor E, Cummings SR, Study of Osteoporotic Fractures (SOF) and Osteoporotic Fractures in Men Study (MrOS) Research Groups (2007) High-trauma fractures and low bone mineral density in older women and men. JAMA 298(20):2381–2388

    Article  CAS  PubMed  Google Scholar 

  28. Melton LJ 3rd (2008) Does high-trauma fracture increase the risk of subsequent osteoporotic fracture? Nat Clin Pract Endocrinol Metab 4(6):316–317

    PubMed  Google Scholar 

  29. Elliot-Gibson V, Bogoch ER, Jamal SA, Beaton DE (2004) Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: a systematic review. Osteoporos Int 15(10):767–778

    Article  CAS  PubMed  Google Scholar 

  30. Kiebzak GM, Beinart GA, Perser K, Ambrose CG, Siff SJ, Heggeness MH (2002) Undertreatment of osteoporosis in men with hip fracture. Arch Intern Med 162(19):2217–2222

    Article  PubMed  Google Scholar 

  31. National Center for Injury Prevention and Control.Recommended Actions to Improve External-Cause-of-Injury Coding in State-Based Hospital Discharge and Emergency Department Data Systems. Atlanta, GA (2009). US Department of Health and Human Services, Centers for Disease Control and Prevention; December

  32. Strategies to Improve External Cause-of-Injury Coding in State-Based Hospital Discharge and Emergency Department Data Systems (2008) Recommendations of the CDC Workgroup for Improvement of External Cause-of-Injury Coding. MMWR: Morbidity and Mortality Weekly Report 28, March

  33. Cuddihy MT, Gabriel SE, Crowson CS, O'Fallon WM, Melton LJ 3rd (1999) Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos Int 9(6):469–475

    Article  CAS  PubMed  Google Scholar 

  34. Lindau TR, Aspenberg P, Arner M, Redlundh-Johnell I, Hagberg L (1999) Fractures of the distal forearm in young adults An epidemiologic description of 341 patients. Acta Orthop Scand 70(2):124–128

    Article  CAS  PubMed  Google Scholar 

  35. Melton LJ 3rd, Amadio PC, Crowson CS, O'Fallon WM (1998) Long-term trends in the incidence of distal forearm fractures. Osteoporos Int 8(4):341–348

    Article  PubMed  Google Scholar 

  36. Melton LJ 3rd, Sampson JM, Morrey BF, Ilstrup DM (1981) Epidemiologic Features of Pelvic Fractures. Clinical Orthopaedics and Related Res. Mar-Apr (155): 43–47.

  37. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35(2):375–382

    Article  CAS  PubMed  Google Scholar 

  38. Langsetmo L, Goltzman D, Kovacs CS, Adachi JD, Hanley DA, Kreiger N, Josse R, Papaioannou A, Olszynski WP, Jamal SA, CaMos Research Group (2009) Repeat low-trauma fractures occur frequently among men and women who have osteopenic BMD. J Bone Miner Res 24(9):1515–1522

    Article  PubMed  Google Scholar 

  39. Center JR, Bliuc D, Nguyen TV, Eisman JA (2007) Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 297:387–394

    Article  CAS  PubMed  Google Scholar 

  40. Briot K, Cortet B, Trémollières F, Sutter B, Thomas T, Roux C, Audran M, ComitéScientifique du GRIO (2009) Male osteoporosis: diagnosis and fracture risk evaluation. Joint Bone Spine 76(2):129–133

    Article  PubMed  Google Scholar 

  41. Audran M, Cortet B (2009) Prevalence of Osteoporosis in Male Patients with Risk Factors. J Bone Miner Res 24 (Suppl 1)

  42. Frost M, Wraae K, Gudex C, Nielsen T, Brixen K, Hagen C, Andersen M (2012) Chronic diseases in elderly men: underreporting and underdiagnosis. Age Ageing 41(2):177–183

    Article  PubMed  Google Scholar 

  43. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR, Baltimore Longitudinal Study of Aging (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 86(2):724–731

    Article  CAS  PubMed  Google Scholar 

  44. Lix LM, Yogendran MS, Leslie WD, Shaw SY, Baumgartner R, Bowman C, Metge C, Gumel A, Hux J, James RC (2008) Using multiple data features improved the validity of osteoporosis case ascertainment from administrative databases. J Clin Epidemiol 61(12):1250–1260

    Article  PubMed  Google Scholar 

  45. Abelson A, Ringe JD, Gold DT, Lange JL, Thomas T (2010) Longitudinal change in clinical fracture incidence after initiation of bisphosphonates. Osteoporos Int 21(6):1021–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Michael Lane for his assistance in analyzing the data.

Conflicts of interest

This study was funded by Amgen Inc., Thousand Oaks, CA; UG and PDM did not receive any remuneration for this study. ADM, CDO, and RBW are employees of and have stock ownership in Amgen, Inc. JWH is an employee of Ardea Biosciences and has stock ownership in Ardea and Amgen Inc. UG has received research grants from Amgen Inc, GSK, Novartis, and Proctor and Gamble. PDM has received research grants and consulting fees/other renumeration from Amgen Inc, GE Lunar, Lilly, Proctor and Gamble, Merck, Radius, Takeda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Manthripragada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manthripragada, A.D., O’Malley, C.D., Gruntmanis, U. et al. Fracture incidence in a large cohort of men age 30 years and older with osteoporosis. Osteoporos Int 26, 1619–1627 (2015). https://doi.org/10.1007/s00198-015-3035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3035-z

Keywords

Navigation